Что такое алгоритм и что он означает. Алгоритмы

Сегодня компьютерные технологии тесно вошли в нашу жизнь. Они внесли в словарь обычного человека множество терминов, значения которых ему не всегда понятны. Но пользуются ими все. Например, что такое алгоритм? Четкого ответа рядовой юзер вам дать не сможет, но знать это необходимо, так как мы сталкиваемся с этим каждый день.

История происхождения термина

Понятие об алгоритме впервые было сформировано благодаря математику по имени Мухаммед Аль-Хорезми. Он жил на Востоке в 8-9-м веках и написал два великих труда. Первый из них дал начало слову «алгебра», а второй - понятию «алгоритм». Он обозначал арифметические операции, которые мы знаем как сложение, вычитание, умножение и деление. В 1957 году в одном из изданий английского словаря авторы посчитали, что алгоритм - это понятие устаревшее. Опять оно активно вошло в обиход лишь с появлением компьютеров. Им обозначали действия, которые входили в определенный процесс. Но он не обязательно должен быть только математическим. Тут подразумевается алгоритм действий любого характера, например, приготовления какого-либо блюда. С того времени это понятие не сходит с уст почти всех людей.

Попытки определения термина

Долгое время этот термин рассматривался исключительно как алгоритм чисел и действий с ними. Ведь и сама математика была по большей части прикладной наукой. Формулы, которые применяются для вычислений, в то время и считались алгоритмами. Шаги, которые выполнялись при решении, были элементарными, а сами вычисления - очень громоздкими и отнимали много времени и сил. Математики даже не задумывались над тем, чтобы дать определение этому понятию. Но со временем наука все больше развивалась и появлялись объекты, которые раньше не встречались (матрицы, векторы, множества и т. д.). Всеми ими нужно было оперировать. Это и дало толчок к пониманию того, что алгоритм - это непростое понятие, и его нужно в точности определить для дальнейшего использования. Ученые разделились во мнениях по поводу этого вопроса. Одни считали, что алгоритм применим ко всему, другие же сомневались, что каждую проблему можно решить с его помощью. Последняя точка зрения оказалась верной, но обосновать ее можно было, лишь дав точное определение понятию «алгоритм».

Что обозначает термин «алгоритм»?

Каждый день человеку приходится решать задачи, которые имеют разную сложность. К простым мы так привыкли, что действия для их решения совершаем автоматически. Над сложными же нужно изрядно поразмыслить. Когда появляется проблема, мы решаем ее поэтапно, действуя шагами. Так и в математике, например, для нахождения неизвестного в уравнении нужно действовать пошагово. Эти операции, постепенно ведущие к решению поставленной задачи, и называются алгоритмом. Алгоритм - это последовательность действий, которые в отдельности являются его шагами. Они имеют определенное место и должны строго идти друг за другом. Существуют классы алгоритмов, их называют классами сложности. К каждому из них относят определенное множество задач, которые имеют примерно одинаковую сложность решения.

Свойства, общие для всех алгоритмов

Помимо алгоритмов, в нашем мире существует множество других инструкций. Но благодаря некоторым свойствам мы можем отличить его от остальных. К ним относятся:

  • Дискретность - схема алгоритма предвидит решение поставленной задачи через последовательные действия, которые выполняются в строгой очередности.
  • Определенность - все поставленные условия четкие и не имеют какой-либо двузначности. Алгоритм действий, таким образом, не дает места для любых импровизаций. Это позволяет механически все выполнять, не нуждаясь в дополнительных подсказках.
  • Результативность - за определенное число шагов алгоритм всегда дает правильное решение задачи.
  • Массовость - алгоритм - это решение проблемы, имеющее общий вид. То есть он применим для всех задач определенного класса, независимо от исходных данных. Их выбирают из некого поля под названием "область применимости алгоритма".

Виды алгоритмов

В зависимости от разных условий, таких как цель, путь решения, начальные данные, алгоритмы делятся на:

  • Механические - жесткая, единственно верная последовательность для достижения требуемого результата (обеспечение работы двигателя и т. д.).
  • Гибкие: 1) вероятностные - имеют несколько путей для достижения верного решения; 2) эвристические - схема алгоритма, которая не имеет однозначной программы действий (предписания и т. д.), ведь она основана на личных качествах человека, его опыте.
  • Вспомогательные - ранее разработанные и полностью предназначенные для разрешения конкретной задачи.

Алгоритмы в информатике

Для информатики алгоритмы имеют особое значение. В этой науке их разделяют на такие виды:

  1. Линейный - все действия выполняются последовательно, друг за другом.
  2. Разветвляющийся алгоритм - это такой, в котором выполнение определенного условия приводит к выбору одного из двух возможных вариантов дальнейших действий.
  3. Циклический - одни и те же действия повторяются над разными исходными данными, таким образом подбираются наиболее подходящие.

Структура алгоритмов

Алгоритмы имеют свою структуру, которая обычно отображается в схеме. Схемой алгоритма называют его графическое изображение в виде связанных друг с другом блоков. Каждый из них отображает один из шагов алгоритма. Описание конкретного действия содержится внутри каждого блока. Такие схемы обычно чертятся для облегчения программирования, так как они наглядны и дают возможность зрительно воспринять объем работы, которую требуется выполнить. Человек может осмыслить процесс, скорректировать его еще до возникновения ошибок.

Правила составления алгоритмов

  • Первым правилом является то, что нужно определить большое количество объектов, которые смогут поддаться построенному алгоритму. Программист с помощью кодировки переводит их в данные. Они бывают входные и выходные. Первые служат для начала работы, вторые становятся ее результатом. Это называется преобразованием данных.
  • Второе правило говорит о том, что работа с алгоритмом требует свободной памяти. Ведь без нее не будет возможности разместить входные данные, работать с ними и получить выходные. Память состоит из ячеек. Если одной из них дать имя, она станет переменной.
  • Третье правило уже описывалось выше как одна из характеристик алгоритма, а именно - дискретность. То есть алгоритм состоит из отдельных операций, или шагов.
  • Четвертое правило напоминает о детерминированности алгоритма. То есть после каждого действия нужно указать, какое будет следующим, либо остановить процесс.
  • Последнее правило гласит, что после определенного числа шагов алгоритм завершает свою работу, имея тот или иной результат. А какой именно, указывает сам программист.

Таким образом, алгоритм - это сложное понятие, которое до появления ЭВМ использовалось только в математике и считалось устаревшим. Сегодня же его применяют во всех сферах жизни, одной из самых важных является информатика.

Каждый алгоритм имеет дело с данными – входными, промежуточными и выходными.

Конечность. Понимается двояко: во-первых, алгоритм состоит из отдельных элементарных шагов, или действий, причем множество различных шагов, из которых составлен алгоритм, конечно. Во-вторых, алгоритм должен заканчиваться за конечное число шагов. Если строится бесконечный, сходящийся к искомому решению процесс, то он обрывается на некотором шаге и полученное значение принимается за приближенное решение рассматриваемой задачи. Точность приближения зависит от числа шагов.

Элементарность (понятность). Каждый шаг алгоритма должен быть простым, чтобы устройство, выполняющее операции, могло выполнить его одним действием.

Дискретность. Процесс решения задачи представляется конечной последовательностью отдельных шагов, и каждый шаг алгоритма выполняется за конечное (не обязательно единичное) время.

Детерминированность (определенность). Каждый шаг алгоритма должен быть однозначно и недвусмысленно определен и не должен допускать произвольной трактовки. После каждого шага либо указывается, какой шаг делать дальше, либо дается команда остановки, после чего работа алгоритма считается законченной.

Результативность. Алгоритм имеет некоторое число входных величин – аргументов. Цель выполнения алгоритма состоит в получении конкретного результата, имеющего вполне определенное отношение к исходным данным. Алгоритм должен останавливаться после конечного числа шагов, зависящего от данных, с указанием того, что считать результатом. Если решение не может быть найдено, то должно быть указано, что в этом случае считать результатом.

Массовость. Алгоритм решения задачи разрабатывается в общем виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Эффективность. Одну и ту же задачу можно решить по-разному и соответственно за разное время и с различными затратами памяти. Желательно, чтобы алгоритм состоял из минимального числа шагов и при этом решение удовлетворяло бы условию точности и требовало минимальных затрат других ресурсов.

Точное математическое определение алгоритма затрудняется тем, что интерпретация предусмотренных предписаний не должна зависеть от выполняющего их субъекта. В зависимости от своего интеллектуального уровня он может либо вовсе не понять, что имеется в виду в инструкции, либо, наоборот, интерпретировать ее непредусмотренным образом.

Можно обойти проблему интерпретации правил, если наряду с формулировками предписаний описать конструкцию и принцип действия интерпретирующего устройства. Это позволяет избежать неопределенности и неоднозначности в понимании одних и тех же инструкций. Для этого необходимо задать язык, на котором описывается множество правил поведения, либо последовательность действий, а также само устройство, которое может интерпретировать предложения, сделанные на этом языке, и выполнять шаг за шагом каждый точно определенный процесс. Оказывается, что такое устройство (машину) можно выполнить в виде, который остается постоянным независимо от сложности рассматриваемой процедуры.

В настоящее время можно выделить три основных типа универсальных алгоритмических моделей. Они различаются исходными посылками относительно определения понятия алгоритма.

Первый тип связывает понятие алгоритма с наиболее традиционными понятиями математики – вычислениями и числовыми функциями. Второй тип основан на представлении об алгоритме как о некотором детерминированном устройстве, способном выполнять в каждый отдельный момент лишь весьма примитивные операции. Такое представление обеспечивает однозначность алгоритма и элементарность его шагов. Кроме того, такое представление соответствует идеологии построения компьютеров. Основной теоретической моделью этого типа, созданной в 1930-х гг. английским математиком Аланом Тьюрингом, является машина Тьюринга.

Третий тип – это преобразования слов в произвольных алфавитах, в которых элементарными операциями являются подстановки, т.е. замены части слова (под словом понимается последовательность символов алфавита) другим словом. Преимущества этого типа моделей состоят в его максимальной абстрактности и возможности применить понятие алгоритма к объектам произвольной (необязательно числовой) природы. Примеры моделей третьего типа – канонические системы американского математика Эмиля Л. Поста и нормальные алгоритмы, введенные советским математиком А. А. Марковым.

Модели второго и третьего типа довольно близки и отличаются в основном эвристическими акцентами, поэтому не случайно говорят о машине Поста, хотя сам Пост об этом не говорил.

Запись алгоритма на некотором языке представляет собой программу. Если программа написана на специальном алгоритмическом языке (например, на ПАСКАЛе, БЕЙСИКе или каком-нибудь другом), то говорят об исходной программе . Программа, написанная на языке, который непосредственно понимает компьютер (как правило, это двоичные коды), называется машинной, или двоичной.

Любой способ записи алгоритма подразумевает, что всякий описываемый с его помощью предмет задается как конкретный представитель часто бесконечного класса объектов, которые можно описывать данным способом.

Средства, используемые для записи алгоритмов, в значительной мере определяются тем, кто будет исполнителем.

Если исполнителем будет человек, запись может быть не полностью формализована, на первое место выдвигаются понятность и наглядность. В данном случае для записи могут быть использованы схемы алгоритмов или словесная запись.

Для записи алгоритмов, предназначенных для исполнителей-автоматов, необходима формализация, поэтому в таких случаях применяют формальные специальные языки. Преимущество формального способа записи состоит в том, что он дает возможность изучать алгоритмы как математические объекты; при этом формальное описание алгоритма служит основой, позволяющей интеллектуально охватить этот алгоритм.

Для записи алгоритмов используют самые разнообразные средства. Выбор средства определяется типом исполняемого алгоритма. Выделяют следующие основные способы записи алгоритмов:

вербальный – алгоритм описывается на человеческом языке;

символьный – алгоритм описывается с помощью набора символов;

графический – алгоритм описывается с помощью набора графических изображений.

Общепринятыми способами записи алгоритма являются графическая запись с помощью схем алгоритмов (блок-схем) и символьная запись с помощью какого-либо алгоритмического языка.

Для описания алгоритма с помощью схем изображают связанную последовательность геометрических фигур, каждая из которых подразумевает выполнение определенного действия алгоритма. Порядок выполнения действий указывается стрелками.

В схемах алгоритмов используют следующие типы графических обозначений.

Начало и конец алгоритма обозначают с помощью одноименных символов (рис. 21.1).

Рис. 21.1.

Шаг алгоритма, связанный с присвоением нового значения некоторой переменной, преобразованием некоторого значения с целью получения другого значения, изображается символом "процесс" (рис. 21.2).

Рис. 21.2.

Выбор направления выполнения алгоритма в зависимости от некоторых переменных условий изображается символом "решение" (рис. 21.3).

Рис. 21.3.

Здесь Р означает предикат (условное выражение, условие). Если условие выполнено (предикат принимает значение ИСТИНА), то выполняется переход к одному шагу алгоритма, а если не выполнено, то к другому.

Имеются примитивы для операций ввода и вывода данных, а также другие графические символы. В настоящий момент они определены стандартом ГОСТ 19.701–90 (ИСО 5807–85) "Единая система программной документации. Схемы алгоритмов, программ данных и систем. Условные обозначения и правила выполнения". Всего сборник ЕСПД содержит 28 документов.

По схеме алгоритма легко составить исходную программу на алгоритмическом языке.

В зависимости от последовательности выполнения действий в алгоритме выделяют алгоритмы линейной, разветвленной и циклической структуры.

В алгоритмах линейной структуры действия выполняются последовательно одно за другим.

В алгоритмах разветвленной структуры в зависимости от выполнения или невыполнения какого-либо условия производятся различные последовательности действий. Каждая такая последовательность действий называется ветвью алгоритма.

В алгоритмах циклической структуры в зависимости от выполнения или невыполнения какого-либо условия выполняется повторяющаяся последовательность действий, называющаяся телом цикла. Вложенным называется цикл, находящийся внутри тела другого цикла. Итерационным называется цикл, число повторений которого не задается, а определяется в ходе выполнения цикла.

В этом случае одно повторение цикла называется итерацией.

В информатике план действий называют алгоритмом .
Алгоритм состоит из отдельных шагов – команд . Ни одну из них нельзя пропустить, чаще всего никакие команды нельзя поменять местами.
Исполнитель – человек, животное или машина, способные понимать и выполнять некоторые команды.
Среда исполнителя – предметы, которые окружают исполнителя и с которыми он работает.
Список Команд Исполнителя (СКИ) – набор команд, понятных исполнителю. Исполнитель может выполнить только те команды, которые входят в его СКИ.

Для решения большинства задач недостаточно отдать одну команду исполнителю, надо составить для него алгоритм – план действий, состоящий из команд, которые ему понятны (входят в его СКИ).
Алгоритм – точно определенный план действий исполнителя, направленный на решение какой-то задачи. В алгоритм можно включать только те команды, которые есть в СКИ.

Какие бывают алгоритмы

Линейный алгоритм
В линейном алгоритме команды выполняются последовательно, одна за другой. Примером линейного алгоритма может служить алгоритм заварки чая.

Разветвляющийся алгоритм

В разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка. Примером разветвляющегося алгоритма может служить алгоритм перехода улицы.

Циклический алгоритм
В циклическом алгоритме некоторые действия повторяются несколько раз (в информатике говорят, что выполняется цикл). Существуют два вида циклических алгоритмов. В одном из них мы знаем заранее, сколько раз надо сделать эти действия, в другом мы должны остановиться лишь тогда, когда выполним работу, то есть наши действия прекращаются при выполнении какого-то условия.
Примером цикла первого типа является наша жизнь в рабочие дни (от понедельника до субботы) – мы выполняем 6 раз почти одни и те же действия.
Пример цикла второго типа – алгоритм распилки бревна: мы не можем заранее сказать, сколько раз нам надо провести пилой от себя и на себя - это зависит от плотности дерева, качества пилы и наших усилий. Однако мы точно знаем, что надо закончить работу, когда очередное отпиленное полено упадет на землю.

Способы записи алгоритмов

Выделяют три наиболее распространенные на практике способа записи алгоритмов:

  • словесный (запись на естественном языке);
  • графический (запись с использованием графических символов);
  • программный (тексты на языках программирования).

Словесный способ записи алгоритмов

Словесный способ – способ записи алгоритма на естественном языке . Данный способ очень удобен, если нужно приближенно описать суть алгоритма. Однако при словесном описании не всегда удается ясно и точно выразить логику действий.

В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника

где S – площадь прямоугольника; а, b – длины его сторон.

Очевидно, что a, b должны быть заданы заранее, иначе задачу решить невозможно.

Словестный способ записи алгоритма выглядит так:

  • Начало алгоритма.
  • Задать численное значение стороны a.
  • Задать численное значение стороны b.
  • Вычислить площадь S прямоугольника по формуле S=a*b.
  • Вывести результат вычислений.
  • Конец алгоритма.

Графический способ описания алгоритмов

Для более наглядного представления алгоритма используется графический способ. Существует несколько способов графического описания алгоритмов. Наиболее широко используемым на практике графическим описанием алгоритмов является использование блок-схем. Несомненное достоинство блок схем – наглядность и простота записи алгоритма.

Каждому действию алгоритма соответствует геометрическая фигура (блочный символ). Перечень наиболее часто употребляемых символов приведен в таблице ниже.

Так как в линейном алгоритме команды выполняются последовательно, то блок-схема будет иметь вид:

Так как в разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка, то блок-схема примет вид:

В циклическом алгоритме некоторые действия повторяются несколько раз и для него блок-схема примет вид:

Программный способ записи алгоритмов

Для того, чтобы алгоритм был понятен роботу, компьютеру или другой машине, недостаточно только написать команды, надо еще и оформить алгоритм в таком виде, в котором его понимает машина (написать программу), т.е. записать его с использованием команд из СКИ, соблюдая правила оформления.

Правила оформления программы:

  1. любой алгоритм имеет название;
  2. алгоритм начинается с открывающей фигурной скобки “{“ и заканчивается закрывающей фигурной скобкой “}”; команды, расположенные между этими скобками, называются телом алгоритма;
  3. в алгоритм могут входить только те команды, которые есть в СКИ исполнителя;
  4. каждая команда заканчивается знаком “;”, который обозначает конец команды;
  5. для того, чтобы нам было легче разбираться в программах, используют комментарии - текстовые пояснения, которые начинаются знаками “/*” и заканчиваются знаками “*/”; исполнитель не обращает внимания на комментарии в алгоритме.

Практические задания:

  1. Составить блок-схему для нахождения периметра квадрата.
  2. Составить блок схему для заваривания чая.
  3. Составить блок-схему для перехода перекрестка со светофором.

Использован материал из книг:

  1. "Современные информационные технологии", авторы преподаватели центра "Турбо"
  2. "Алгоритмы и исполнители", автор Поляков К.

Прежде чем начать писать супер программы, давайте, разберёмся, что же такое программа? Программа — это определённый алгоритм, который должен выполнить ваш компьютер.

Ну, а теперь главный вопрос: Что такое алгоритм?

Свойства алгоритмов

Я не буду изобретать велосипед, а просто перечислю свойства алгоритма, которые известны уже много лет.

  1. Конечность(результативность) алгоритма означает, что за конечное число шагов должен быть получен результат;
  2. Дискретность алгоритма означает, что алгоритм должен быть разбит на последовательность выполняемых шагов;
  3. Понятность алгоритма означает, что алгоритм должен содержать только те команды, которые входят в набор команд, который может выполнить конкретный исполнитель;
  4. Точность алгоритма означает, что каждая команда должна пониматься однозначно;
  5. Массовость алгоритма означает, что однажды составленный алгоритм должен подходить для решения подобных задач с разными исходными данными.
  6. Детерминированность (определенность) . Алгоритм обладает свойством детерминированности, если для одних и тех же наборов исходных данных он будет выдавать один и тот же результат, т.е. результат однозначно определяется исходными данными.

Таким образом, Алгоритм — это понятное и точное предписание исполнителю, выполнить конечную последовательность шагов, приводящей от исходных данных к искомому результату.

Представьте, что я должен с ножом порезать апельсин. Чтобы выполнить это действие мне потребуется алгоритм.


Я хочу порезать апельсин. Как это сделать?

Виды алгоритмов

    • Линейный(Команды последовательны без повторов и переходов);

Пример алгоритма:

Начало
достань нож
порежь апельсин(Именно апельсин, а не любой другой фрукт. За это отвечает ТОЧНОСТЬ)
съешь апельсин
конец

    • Циклический(Есть группа действий, повторяющихся по некоторому условию);

Пример алгоритма:

Начало
достань нож
ПОКА апельсины не закончились
порежь апельсин
съешь все апельсины
конец

    • Разветвляющийся(Выполнение команды зависит от условия).

Пример алгоритма:

Начало
достань нож
ЕСЛИ нож тупой поточи
порежь апельсин
съешь апельсин
конец

Вот и все. На следующем уроке мы с вами рассмотрим структуру программы в Паскаль.

Понятие алгоритма

Понятие алгоритма является центральным понятием информатики. Слово «алгоритм» произошло от имени узбекского математика аль-Хорезми, который еще в IX веке сформулировал правила выполнения арифметических действий. В современной математике и информатике термин алгоритм имеет следующие определения:

  • - последовательность действий со строго определенными правилами выполнения;
  • - предписание, определяющее содержание и последовательность операций, переводящих исходные данные в искомый результат;
  • - точное описание некоторого вычислительного процесса или любой иной последовательности действий;
  • - точное и полное предписание о последовательности выполнения конечного числа действий, необходимых для решения любой задачи данного типа.

Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством - формальным исполнителем. Задача исполнителя - точная реализация уже имеющегося алгоритма. Формальный исполнитель не обязан вникать в сущность алгоритма, а возможно, и неспособен его понять.

Примером формального исполнителя может служить стиральная машина-автомат, которая неукоснительно исполняет предписанные ей действия, даже если вы забыли положить в нее порошок. Человек тоже может выступать в роли формального исполнителя, но в первую очередь формальными исполнителями являются различные автоматические устройства, и компьютер в том числе. Каждый алгоритм создается в расчете па конкретного исполнителя.

Каждый исполнитель может выполнять команды только из некоторого строго заданного списка - системы команд исполнителя. Для каждой команды должны быть заданы условия применимости (в каких состояниях среды может быть выполнена команда) и описаны результаты выполнения команды. После вызова команды исполнитель совершает соответствующее элементарное действие.

В информатике универсальным исполнителем алгоритмов является компьютер.


Виды алгоритмов

Алгоритм применительно к вычислительной машине - точное предписание, т. е. набор операций н правил их чередования, при помощи которого, начиная с некоторых исходных данных, можно решить любую задачу фиксированного типа.

Алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

  • Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.
  • Эвристический алгоритм (от греческого слова «эврика») - это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя. К эвристическим алгоритмам относят, например, инструкции и предписания. В этих алгоритмах используются универсальные логические процедуры и способы принятия решений, основанные на аналогиях, ассоциациях и прошлом опыте решения схожих задач.
  • Линейный алгоритм - набор команд (указаний), выполняемых последовательно друг за другом.
  • Разветвляющийся алгоритм - алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.
  • Циклический алгоритм - алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) Над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы - последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторому условию.
  • Вспомогательный (подчиненный) алгоритм (процедура) - алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи. В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм.

Алгоритм можно задать несколькими способами:

  • - словесным , то есть записью последовательности действий на естественном языке;
  • - графическим , с помощью специальных графических символов;
  • - формульным , то есть с помощью математических формул, которые определяют порядок вычислений;
  • - табличным , и виде таблицы, в которой фиксируются этапы исполнения алгоритма и результаты исполнения.

Блок-схема алгоритма

Задание алгоритмов с помощью блок-схем оказалось очень удобным средством изображения алгоритмов и получило широкое распространение.

Блок-схема алгоритма - графическое изображение алгоритма в виде связанных между собой с помощью стрелок (линий перехода) и блоков - графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия.

В таблице приведены наиболее часто употребляемые символы.

Символы блок-схемы
Название символа Обозначение и пример заполнения Пояснение
Процесс Вычислительное действие или последовательность действий
Решение Проверка условий
Модификация Начало цикла
Предопределенный процесс Вычисления по подпрограмме, стандартной подпрограмме
Ввод-вывод Ввод-вывод в общем виде
Пуск-остановка Начало, конец алгоритма, вход и выход в подпрограмму
Документ Вывод результатов

Блок «процесс » применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок «решение » используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок «модификация » используется для организации циклических конструкций. (Слово «модификация» означает «видоизменение, преобразование»). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок «предопределенный процесс » используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Для примера приведем блок-схемы алгоритма нахождения максимального из двух значений:


Правила построения алгоритма

Чтобы алгоритм выполнил свое предназначение, его необходимо строить по определенным правилам. Поэтому нужно говорить все же не о свойствах алгоритма, а о правилах построения алгоритма, или о требованиях, предъявляемых к алгоритму.

Первое правило - при построении алгоритма, прежде всего, необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результата своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило - для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т. е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти.

Третье правило - дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Точнее - из множества шагов.

Четвертое правило - детерминированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки.

Пятое правило - сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Свойства алгоритма

Дискретность (прерывность, раздельность) - алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

Определенность - каждое правило алгоритма должно быть четким, однозначным. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

Результативность (конечность) - алгоритм должен приводить к решению задачи за конечное число шагов.

Массовость - алгоритм решения задачи разрабатывается в общем виде, то есть он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.