Как работает процессор компьютера схема. Устройство процессора, из чего состоит процессор

Процессор - это, без сомнения, главный компонент любого компьютера. Именно этот небольшой кусочек кремния, размером в несколько десятков миллиметров выполняет все те сложные задачи, которые вы ставите перед своим компьютером. Здесь выполняется операционная система, а также все программы. Но как все это работает? Этот вопрос мы попытаемся разобрать в нашей сегодняшней статье.

Процессор управляет данными на вашем компьютере и выполняют миллионы инструкций в секунду. И под словом процессор, я подразумеваю именно то, что оно на самом деле означает - небольшой чип из кремния, который фактически выполняет все операции на компьютере. Перед тем как перейти к рассмотрению как работает процессор, нужно сначала подробно рассмотреть что это такое и из чего он состоит.

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) - который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году - Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро - здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд - этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш - область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры - это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер - 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор - отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина - для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных - для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации - позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска - для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C - предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP - содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP - адрес данных в оперативной памяти;
  • Z - содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

Как работает процессор компьютера?

Вычислительное ядро процессора может выполнять только математические операции, операции сравнения и перемещение данных между ячейками и оперативной памятью, но этого вполне достаточно, чтобы вы могли играть игры, смотреть фильмы и просматривать веб-страницы и многое другое.

Фактически любая программа состоит из таких команд: переместить, сложить, умножить, делить, разница и перейти к инструкции если выполняется условие сравнения. Конечно, это далеко не все команды, есть другие, которые объединяют между собой уже перечисленные или упрощают их использование.

Все перемещения данных выполняются с помощью инструкции перемещения (mov), эта инструкция перемещает данные между ячейками регистров, между регистрами и оперативной памятью, между памятью и жестким диском. Для арифметических операций есть специальные инструкции. А инструкции перехода нужны для выполнения условий, например, проверить значение регистра A и если оно не равно нулю, то перейти к инструкции по нужному адресу. Также с помощью инструкций перехода можно создавать циклы.

Все это очень хорошо, но как же все эти компоненты взаимодействуют между собой? И как транзисторы понимают инструкции? Работой всего процессора управляет дешифратор инструкций. Он заставляет каждый компонент делать то, что ему положено. Давайте рассмотрим что происходит когда нужно выполнить программу.

На первом этапе дешифратор загружает адрес первой инструкции программы в памяти в регистр следующей инструкции EIP, для этого он активирует канал чтения и открывает транзистор-защелку чтобы пустить данные в регистр EIP.

Во втором тактовом цикле дешифратор инструкций преобразует команду в набор сигналов для транзисторов вычислительного ядра, которые выполняют ее и записывают результат в один из регистров, например, С.

На третьем цикле дешифратор увеличивает адрес следующей команды на единицу, так, чтобы он указывал на следующую инструкцию в памяти. Далее, дешифратор переходит к загрузке следующей команды и так до окончания программы.

Каждая инструкция уже закодирована последовательностью транзисторов, и преобразованная в сигналы, она вызывает физические изменения в процессоре, например, изменению положения защелки, которая позволяет записать данные в ячейку памяти и так далее. На выполнение разных команд нужно разное количество тактов, например, для одной команды может понадобиться 5 тактов, а для другой, более сложной до 20. Но все это еще зависит от количества транзисторов в самом процессоре.

Ну с этим все понятно, но это все будет работать только если выполняется одна программа, а если их несколько и все одновременно. Можно предположить, что у процессора есть несколько ядер, и тогда на каждом ядре выполняется отдельная программ. Но нет, на самом деле там таких ограничений нет.

В один определенный момент может выполняться только одна программа. Все процессорное время разделено между всеми запущенными программами, каждая программа выполняется несколько тактов, затем процессор передается другой программе, а все содержимое регистров сохраняется в оперативную память. Когда управление возвращается этой программе, то в регистры грузятся ранее сохраненные значения.

Выводы

Вот и все, в этой статье мы рассмотрели как работает процессор компьютера, что такое процессор и из чего он состоит. Возможно, это немного сложно, но мы рассмотрели все более просто. Надеюсь, теперь вам стало более ясно то, как работает это очень сложное устройство.

На завершение видео об истории создания процессоров:

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор . И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле , дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов , открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние "0" или "1".

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – "silicium" в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования , а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа . Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы "–" касался p-стороны пластины, а "+" – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. "+" от источника к p-стороне, а "–" – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода .

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии .

Но, как только мы подключим еще один источник питания (назовем его V2), установив "+" контакт на «центральную» p-область (базу), а "–" контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

Выдыхаем!

4. Так как все-таки работает компьютер?

А теперь самое главное .

В зависимости от подаваемого напряжения, транзистор может быть либо открыт , либо закрыт . Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – "0".

При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или "1" в двоичной системе.

Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1 . Итак, мы определились с тем, что такое бит . Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом .

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов .

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы , в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор .

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

  • 1964 год IBM System/360. Компьютер, совместимый с универсальным программным кодом. Набор инструкций для одной модели процессора мог использоваться и для другой.
  • 70-e годы. Появление первых микропроцессоров. Однокристальный процессор от Intel. Intel 4004 – 10 мкм ТП, 2 300 транзисторов, 740 КГц.
  • 1973 год Intel 4040 и Intel 8008. 3 000 транзисторов, 740 КГц у Intel 4040 и 3 500 транзисторов при 500 кГц у Intel 8008.
  • 1974 год Intel 8080. 6 мкм ТП и 6000 транзисторов. Тактовая частота около 5 000 кГц. Именно этот процессор использовался в компьютере Altair-8800. Отечетсвенная копия Intel 8080 – процессор КР580ВМ80А, разработанный Киевским НИИ микроприборов. 8 бит.
  • 1976 год Intel 8080 . 3 мкм ТП и 6500 транзисторов. Тактовая частота 6 МГц. 8 бит.
  • 1976 год Zilog Z80. 3 мкм ТП и 8500 транзисторов. Тактовая частота до 8 МГц. 8 бит.
  • 1978 год Intel 8086 . 3 мкм ТП и 29 000 транзисторов. Тактовая частота около 25 МГц. Система команд x86, которая используется и сегодня. 16 бит.
  • 1980 год Intel 80186 . 3 мкм ТП и 134 000 транзисторов. Тактовая частота – до 25 МГц. 16 бит.
  • 1982 год Intel 80286. 1,5 мкм ТП и 134 000 транзисторов. Частота – до 12,5 МГц. 16 бит.
  • 1982 год Motorola 68000 . 3 мкм и 84 000 транзисторов. Этот процессор использовался в компьютере Apple Lisa.
  • 1985 год Intel 80386 . 1,5 мкм тп и 275 000 транзисторов.Частота – до 33 МГц в версии 386SX.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

  • кэш-памяти;
  • конвейера;
  • встроенного сопроцессора;
  • множителя.

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы . Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

  • SPARC;
  • ARM ;
  • PowerPC;
  • Intel P5;
  • AMD K5;
  • Intel P6.

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому - атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры . Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов . О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

  • сложность команд и откровенная их запутанность;
  • высокое потребление энергии и выделение теплоты.

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь - самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

  • мобильность;
  • автономность.

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

4.57 из 5, оценили: 30 )

сайт Большая статья, наливайте чай.

Центральный процессор - это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Центральный процессор в общем случае содержит в себе:

    арифметико-логическое устройство;

    шины данных и шины адресов;

    регистры;

    счетчики команд;

    кэш - очень быструю память малого объема,

    математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристаллическая пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

Основные характеристики процессора:

    Производительность - основная характеристика, показывающая скорость выполнения компьютером операций обработки информации. Она в свою очередь зависит от следующих характеристик:

    Тактовая частота - определяет число тактов работы процессора в секунду

    Разрядность - определяет размер минимальной порции информации, называемой машинным словом

    Адресное пространство - разрядность адресной шины, то есть максимальный объём оперативной памяти, которая может быть установлена на компьютере

8.2.3. Принцип действия процессора.

Процессор является главным элементом ЭВМ. Он прямо или косвенно управляет всеми устройствами и процессами, происходящими в ЭВМ.

В конструкции современных процессоров четко просматривается тенденция постоянного увеличения тактовой частоты. Это естественно: чем больше операций выполняет процессор, тем выше его производительность. Предельная тактовая частота во многом определяется существующей технологией производства микросхем (наименьшими достижимыми размерами элементов, которые определяют минимальное время передачи сигналов).

Кроме повышения тактовой частоты, увеличение производительности процессоров достигается разработчиками менее очевидными приемами, связанными с изобретением новых архитектур и алгоритмов обработки информации. Некоторые из них рассмотрим на примере процессора Pentium (Р5) и последующих моделей.

Перечислим основные особенности процессора Pentium:

    конвейерная обработка информации;

    суперскалярная архитектура;

    наличие раздельных кэш-памятей для команд и данных;

    наличие блока предсказания адреса перехода;

    динамическое исполнение программы;

    наличие блока вычислений с плавающей точкой;

    поддержка многопроцессорного режима работы;

    наличие средства обнаружения ошибок.

Термин «суперскалярная архитектура» означает, что процессор содержит более одного вычислительного блока. Эти вычислительные блоки чаще называют конвейерами. Заметим, что первая суперскалярная архитектура была реализована в отечественной ЭВМ «Эльбрус-1» (1978 г.).

Наличие в процессоре двух конвейеров позволяет ему одновременно выполнять (завершать) две команды (инструкции).

Каждый конвейер разделяет процесс выполнения команды на несколько этапов (например, пять):

    выборка (считывание) команды из ОЗУ или кэш-памяти;

    декодирование (дешифрация) команды, т. е. определение кода выполняемой операции;

    выполнение команды;

    обращение к памяти;

    запоминание полученных результатов в памяти.

Для реализации каждого из перечисленных этапов (каждой операции) служит отдельное устройство- ступень. Таким образом, в каждом конвейере процессора Pentium имеется пять ступеней.

При конвейерной обработке на выполнение каждого этапа отводится один такт синхронизирующей (тактовой) частоты. В каждом новом такте заканчивается выполнение одной команды и начинается выполнение новой команды. Такое выполнение команд называют поточной обработкой.

Образно ее можно сравнить с производственным конвейером (потоком), где на каждом участке с разными изделиями выполняют всегда одну и ту же операцию. При этом, когда готовое изделие сходит с конвейера, на него заходит новое, а остальные изделия в это время находятся на разных стадиях готовности. Переход изготавливаемых изделий с участка на участок должен происходить синхронно, по специальным сигналам (в процессоре это такты, формируемые тактовым генератором).

Общее время выполнения одной команды в конвейере с пятью ступенями будет составлять пять периодов тактовой частоты. В каждом такте конвейер будет одновременно обрабатывать (выполнять) пять различных команд. В результате за пять тактов будет выполнено пять команд. Таким образом, конвейеризация увеличивает производительность процессора, но она не сокращает время выполнения отдельной команды. Выигрыш получается за счет того, что обрабатывается сразу несколько команд.

В действительности конвейеризация даже увеличивает время выполнения каждой отдельной команды из-за появления дополнительных расходов, связанных с организацией работы конвейера. При этом тактовая частота ограничивается быстродействием работы самой медленной ступени конвейера.

В качестве примера рассмотрим процесс выполнения команды, у которой длительности выполнения этапов составляют 60, 30, 40, 50 и 20 нс. Примем дополнительные расходы на организацию конвейерной обработки равными 5 нс.

Если бы не было конвейеризации, то на выполнение одной команды потребовалось

60 + 30 + 40 + 50 + 20 = 200 нс.

Если же используется конвейерная организация, то длительность такта должна быть равна длительности самого медленного этапа обработки с добавлением «накладных» расходов, т.е. 60 + 5 = 65 нс. Таким образом, полученное в результате конвейеризации сокращение времени выполнения команды составит 200/65»3,1 раза.

Заметим, что время выполнения конвейером одной команды составляет 5 × 65 = 325 нс. Эта величина существенно больше 200 нс - времени выполнения команды без конвейеризации. Но одновременное выполнение сразу пяти команд дает среднее время завершения одной команды 65 нс.

Процессор Pentium имеет две кэш-памяти первого уровня (они расположены внутри процессора). Как известно, кэширование увеличивает производительность процессора за счет уменьшения числа случаев ожидания поступления информации из медленной оперативной памяти. Нужные данные и команды берутся процессором из быстрой кэш-памяти (буфера), куда они заносятся заранее.

Наличие одной кэш-памяти в предыдущих конструкциях процессоров приводило к возникновению структурных конфликтов. Две команды, выполнявшиеся конвейером, порой одновременно пытались считать информацию из единственной кэш-памяти. Выполнение раздельного кэширования (буферизации) для команд и данных исключает такие конфликты, давая возможность обеим командам выполняться одновременно.

Развитие вычислительной техники идет непрерывно. Постоянно конструкторы ищут новые пути совершенствования своих изделий. Наиболее ценным ресурсом процессоров является их производительность. По этой причине изобретаются разнообразные приемы повышения производительности процессоров.

Одним из таких приемов является экономия времени за счет предсказания возможных путей выполнения разветвляющегося алгоритма. Это осуществляется с помощью блока предсказания адреса будущего перехода. Идея его работы похожа на идею работы кэш-памяти.

Как известно, существуют линейные, циклические и разветвляющиеся вычислительные процессы. В линейных алгоритмах команды выполняются в порядке их записи в оперативной памяти: последовательно одна за другой. Для таких алгоритмов введенный в процессор блок предсказания адреса перехода не может дать выигрыша.

В разветвляющихся алгоритмах выбор команды определяется результатами проверки условий ветвлений. Если ждать окончания вычислительного процесса в точке ветвления и затем выбирать из ОЗУ нужную команду, то неизбежно появятся потери времени из-за непроизводительного простоя процессора (считывание команды из ОЗУ идет медленно).

Блок предсказания адреса перехода работает на опережение и пытается заблаговременно предсказать адрес перехода, чтобы заранее перенести нужную команду из медленной оперативной памяти в специальный быстрый буфер перехода BTB (Branch Target Buffer).

Когда буфер ВТВ содержит правильное предсказание, переход происходит без задержки. Это напоминает работу кэш-памяти, у которой также бывают промахи. Из-за промахов операнды приходится считывать не из кэш-памяти, а из медленной ОП. Из-за этого происходит потеря времени.

Реализацию идеи предсказания адреса перехода осуществляют в процессоре два независимых буфера предварительной выборки. Они работают совместно с буфером предсказания переходов, причем один из буферов выбирает команды последовательно, а второй - согласно предсказаниям ВТВ.

Процессор Pentium имеет два пятиступенчатых конвейера для выполнения операций в формате с фиксированной точкой. Кроме того, в процессоре имеется конвейер с восьмью ступенями для вычислений в формате с плавающей точкой. Такие вычисления требуются при выполнении математических расчетов, а также для быстрой обработки динамических трехмерных цветных изображений.

Развитие архитектуры процессоров идет по пути постоянного увеличения объема кэш-памяти первого и второго уровней. Исключением стал процессор Pentium 4, у которого объем кэш-памяти неожиданно снизился по сравнению с Pentium III.

Для повышения производительности в новых конструкциях процессоров создают две системные шины, работающие с разными тактовыми частотами. Быстрая шина используется для работы с кэш-памятью второго уровня, а медленная - для традиционного обмена информацией с другими устройствами, например ОЗУ. Наличие двух шин исключает конфликты при обмене информацией процессора с основной памятью и кэш-памятью второго уровня, находящейся за пределами кристалла процессора.

Следующие за Pentium процессоры содержат большое число ступеней в конвейере. Это уменьшает время выполнения каждой операции в отдельной ступени, а значит, позволяет поднять тактовую частоту процессора.

В процессоре Pentium Pro (P6) применен новый подход к порядку выполнения команд, последовательно расположенных в ОЗУ.

Новый подход заключается в выполнении команд в произвольном порядке по мере их готовности (независимо от порядка расположения в ОЗУ). Однако конечный результат формируется всегда в соответствии с исходным порядком команд в программе. Такой порядок выполнения команд называется динамическим или опережающим.

Рассмотрим в качестве примера следующий фрагмент учебной программы, записанной на некотором (вымышленном) машинно-ориентированном языке.

r1 ¬mem Команда 1

r3 ¬r1 + r2 Команда 2

r5 ¬r5 + 1 Команда 3

r6 ¬r6 – r7 Команда 4

Символами r1…r7 обозначены регистры общего назначения (РОН), которые входят в блок регистров процессора.

Символом memобозначена ячейка памяти ОЗУ.

Прокомментируем записанную программу.

Команда 1: записать в РОН r1 содержимое ячейки памяти ОЗУ, адрес которой указан в РОН r4.

Команда 2: записать в РОН r3 результат сложения содержимого регистров r1 и r2.

Команда 3: прибавить к содержимому регистра r5 единицу.

Команда 4: уменьшить содержимое РОН r6 на содержимое регистра r7.

Предположим, что при выполнении команды 1 (загрузка операнда из памяти в регистр общего назначения r1) оказалось, что содержимое ячейки памяти mem отсутствует в кэш-памяти процессора (произошел промах, нужный операнд не был заранее доставлен в буфер из ОЗУ).

При традиционном подходе процессор перейдет к выполнению команд 2, 3, 4 только после того, как данные из ячейки mem основной памяти поступят в процессор (точнее, в регистр r1). Так как считывание будет происходить из медленно работающей оперативной памяти, этот процесс займет достаточно много времени (по меркам процессора). Все время ожидания этого события процессор будет простаивать, не выполняя полезной работы.

В приведенном примере процессор не может выполнить команду 2 до завершения команды 1, так как команда 2 использует результаты выполнения команды 1. В то же время процессор мог бы заранее выполнить команды 3 и 4, которые не зависят от результата выполнения команд 1 и 2.

В подобных случаях процессор Р6 работает иначе.

Процессор Р6 не ждет окончания выполнения команд 1 и 2, а сразу переходит к внеочередному выполнению команд 3 и 4. Результаты опережающего выполнения команд 3 и 4 сохраняются и извлекаются позднее, после выполнения команд 1 и 2.Таким образом, процессор Р6 выполняет команды в соответствии с их готовностью к выполнению, вне зависимости от их первоначального расположения в программе.

Производительность, безусловно, важный показатель работы ЭВМ. Однако не менее важно, чтобы быстрые вычисления происходили при малом числе ошибок.

В процессоре имеется устройство самотестирования, которое автоматически проверяет работоспособность большинства элементов процессора.

Кроме того, выявление сбоев, произошедших внутри процессора, осуществляется с помощью специального формата данных. К каждому операнду добавляется бит четности, в результате чего все циркулирующие внутри процессора числа становятся четными. Появление нечетного числа сигнализирует о случившемся сбое. Наличие нечетного числа - это как бы появление фальшивой банкноты без водяных знаков.

Единицами измерения быстродействия процессоров (и ЭВМ) могут служить:

    МИПС (MIPS- Mega Instruction Per Second)- миллион команд (инструкций) над числами с фиксированной точкой за секунду;

    МФЛОПС (MFLOPS- Mega Floating Operation Per Second)- миллион операций над числами с плавающей точкой за секунду;

    ГФЛОПС (GFLOPS- Giga Floating Operation Per Second)- миллиард операций над числами с плавающей точкой за секунду.

Имеются сообщения о самом быстром в мире компьютере ASCI White (корпорация IBM), быстродействие которого достигает 12,3 ТФЛОПС (триллиона операций).

Устройство и принцип работы процессора

Процессор – это основное устройство ЭВМ, выполняющее логические и арифметические операции, и осуществляющее управление всеми компонентами ЭВМ. Процессор представляет собой миниатюрную тонкую кремниевую пластинку прямоугольной формы, на которой размещается огромное количество транзисторов, реализующих все функции, выполняемые процессором. Кремневая пластинка – очень хрупкая, а так как ее любое повреждение приведет к выходу из строя процессора, то она помещается в пластиковый или керамический корпус.

1. Введение.

Современный процессор – это сложное и высокотехнологическое устройство, включающее в себя все самые последние достижения в области вычислительной техники и сопутствующих областей науки.

Большинство современных процессоров состоит из:

  • одного или нескольких ядер, осуществляющих выполнение всех инструкций;
  • нескольких уровней КЭШ-памяти (обычно, 2 или три уровня), ускоряющих взаимодействие процессора с ОЗУ;
  • контроллера ОЗУ;
  • контроллера системной шины (DMI, QPI, HT и т.д.);

И характеризуется следующими параметрами:

  • типом микроархитектуры;
  • тактовой частотой;
  • набором выполняемых команд;
  • количеством уровней КЭШ-памяти и их объемом;
  • типом и скоростью системной шины;
  • размерами обрабатываемых слов;
  • наличием или отсутствием встроенного контроллера памяти;
  • типом поддерживаемой оперативной памяти;
  • объемом адресуемой памяти;
  • наличием или отсутствием встроенного графического ядра;
  • энергопотреблением.

Упрощенная структурная схема современного многоядерного процессора представлена на рисунке 1.

Начнем обзор устройства процессора с его основной части – ядра.

2. Ядро процессора.

Ядро процессора – это его основная часть, содержащая все функциональные блоки и осуществляющая выполнение всех логических и арифметических операций.

На рисунке 1 приведена структурная схема устройства ядра процессора. Как видно на рисунке, каждое ядро процессора состоит из нескольких функциональных блоков:

  • блока выборки инструкций;
  • блоков декодирования инструкций;
  • блоков выборки данных;
  • управляющего блока;
  • блоков выполнения инструкций;
  • блоков сохранения результатов;
  • блока работы с прерываниями;
  • ПЗУ, содержащего микрокод;
  • набора регистров;
  • счетчика команд.

Блок выборки инструкций осуществляет считывание инструкций по адресу, указанному в счетчике команд. Обычно, за такт он считывает несколько инструкций. Количество считываемых инструкций обусловлено количеством блоков декодирования, так как необходимо на каждом такте работы максимально загрузить блоки декодирования. Для того чтобы блок выборки инструкций работал оптимально, в ядре процессора имеется предсказатель переходов.

Предсказатель переходов пытается определить, какая последовательность команд будет выполняться после совершения перехода. Это необходимо, чтобы после условного перехода максимально нагрузить конвейер ядра процессора.

Блоки декодирования , как понятно из названия, – это блоки, которые занимаются декодированием инструкций, т.е. определяют, что надо сделать процессору, и какие дополнительные данные нужны для выполнения инструкции. Задача эта для большинства современных коммерческих процессоров, построенных на базе концепции CISC, – очень сложная. Дело в том, что длина инструкций и количество операндов – нефиксированные, и это сильно усложняет жизнь разработчикам процессоров и делает процесс декодирования нетривиальной задачей.

Часто отдельные сложные команды приходится заменять микрокодом – серией простых инструкций, в совокупности выполняющих то же действие, что и одна сложная инструкция. Набор микрокода прошит в ПЗУ, встроенном в процессоре. К тому же микрокод упрощает разработку процессора, так как отпадает надобность в создании сложноустроенных блоков ядра для выполнения отдельных команд, да и исправить микрокод гораздо проще, чем устранить ошибку в функционировании блока.

В современных процессорах, обычно, бывает 2-4 блока декодирования инструкций, например, в процессорах Intel Core 2 каждое ядро содержит по два таких блока.

Блоки выборки данных осуществляют выборку данных из КЭШ-памяти или ОЗУ, необходимых для выполнения текущих инструкций. Обычно, каждое процессорное ядро содержит несколько блоков выборки данных. Например, в процессорах Intel Core используется по два блока выборки данных для каждого ядра.

Управляющий блок на основании декодированных инструкций управляет работой блоков выполнения инструкций, распределяет нагрузку между ними, обеспечивает своевременное и верное выполнение инструкций. Это один из наиболее важных блоков ядра процессора.

Блоки выполнения инструкций включают в себя несколько разнотипных блоков:

ALU – арифметическое логическое устройство;

FPU – устройство по выполнению операций с плавающей точкой;

Блоки для обработки расширения наборов инструкций. Дополнительные инструкции используются для ускорения обработки потоков данных, шифрования и дешифрования, кодирования видео и так далее. Для этого в ядро процессора вводят дополнительные регистры и наборы логики. На данный момент наиболее популярными расширениями наборов инструкция являются:

MMX (Multimedia Extensions) – набор инструкций, разработанный компанией Intel, для ускорения кодирования и декодирования потоковых аудио и видео-данных;

SSE (Streaming SIMD Extensions) – набор инструкций, разработанный компанией Intel, для выполнения одной и той же последовательности операций над множеством данных с распараллеливанием вычислительного процесса. Наборы команд постоянно совершенствуются, и на данный момент имеются ревизии: SSE, SSE2, SSE3, SSSE3, SSE4;

ATA (Application Targeted Accelerator) – набор инструкций, разработанный компанией Intel, для ускорения работы специализированного программного обеспечения и снижения энергопотребления при работе с такими программами. Эти инструкции могут использоваться, например, при расчете контрольных сумм или поиска данных;

3DNow – набор инструкций, разработанный компанией AMD, для расширения возможностей набора инструкций MMX;

AES (Advanced Encryption Standard) – набор инструкций, разработанный компанией Intel, для ускорения работы приложений, использующих шифрование данных по одноименному алгоритму.

Блок сохранения результатов обеспечивает запись результата выполнения инструкции в ОЗУ по адресу, указанному в обрабатываемой инструкции.

Блок работы с прерываниями. Работа с прерываниями – одна из важнейших задач процессора, позволяющая ему своевременно реагировать на события, прерывать ход работы программы и выполнять требуемые от него действия. Благодаря наличию прерываний, процессор способен к псевдопараллельной работе, т.е. к, так называемой, многозадачности.

Обработка прерываний происходит следующим образом. Процессор перед началом каждого цикла работы проверяет наличие запроса на прерывание. Если есть прерывание для обработки, процессор сохраняет в стек адрес инструкции, которую он должен был выполнить, и данные, полученные после выполнения последней инструкции, и переходит к выполнению функции обработки прерывания.

После окончания выполнения функции обработки прерывания, из стека считываются сохраненные в него данные, и процессор возобновляет выполнение восстановленной задачи.

Регистры – сверхбыстрая оперативная память (доступ к регистрам в несколько раз быстрее доступа к КЭШ-памяти) небольшого объема (несколько сотен байт), входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа: регистры общего назначения и специальные регистры.

Регистры общего назначения используются при выполнении арифметических и логических операций, или специфических операций дополнительных наборов инструкций (MMX, SSE и т.д.).

Регистры специального назначения содержат системные данные, необходимые для работы процессора. К таким регистрам относятся, например, регистры управления, регистры системных адресов, регистры отладки и т.д. Доступ к этим регистрам жестко регламентирован.

Счетчик команд – регистр, содержащий адрес команды, которую процессор начнет выполнять на следующем такте работы.

2.1 Принцип работы ядра процессора.

Принцип работы ядра процессора основан на цикле, описанном еще Джоном фон Нейманом в 1946 году. В упрощенном виде этапы цикла работы ядра процессора можно представить следующим образом:

1. Блок выборки инструкций проверяет наличие прерываний. Если прерывание есть, то данные регистров и счетчика команд заносятся в стек, а в счетчик команд заносится адрес команды обработчика прерываний. По окончанию работы функции обработки прерываний, данные из стека будут восстановлены;

2. Блок выборки инструкций из счетчика команд считывает адрес команды, предназначенной для выполнения. По этому адресу из КЭШ-памяти или ОЗУ считывается команда. Полученные данные передаются в блок декодирования;

3. Блок декодирования команд расшифровывает команду, при необходимости используя для интерпретации команды записанный в ПЗУ микрокод. Если это команда перехода, то в счетчик команд записывается адрес перехода и управление передается в блок выборки инструкций (пункт 1), иначе счетчик команд увеличивается на размер команды (для процессора с длинной команды 32 бита – на 4) и передает управление в блок выборки данных;

4. Блок выборки данных считывает из КЭШ-памяти или ОЗУ требуемые для выполнения команды данные и передает управление планировщику;

5. Управляющий блок определяет, какому блоку выполнения инструкций обработать текущую задачу, и передает управление этому блоку;

6. Блоки выполнения инструкций выполняют требуемые командой действия и передают управление блоку сохранения результатов;

7. При необходимости сохранения результатов в ОЗУ, блок сохранения результатов выполняет требуемые для этого действия и передает управление блоку выборки инструкций (пункт 1).

Описанный выше цикл называется процессом (именно поэтому процессор называется процессором). Последовательность выполняемых команд называется программой.

Скорость перехода от одного этапа цикла к другому определяется тактовой частотой процессора, а время работы каждого этапа цикла и время, затрачиваемое на полное выполнение одной инструкции, определяется устройством ядра процессора.

2.2. Способы повышения производительности ядра процессора.

Увеличение производительности ядра процессора, за счет поднятия тактовый частоты, имеет жесткое ограничение. Увеличение тактовой частоты влечет за собой повышение температуры процессора, энергопотребления и снижение стабильности его работы и срока службы.

Поэтому разработчики процессоров применяют различные архитектурные решения, позволяющие увеличить производительность процессоров без увеличения тактовой частоты.

Рассмотрим основные способы повышения производительности процессоров.

2.2.1. Конвейеризация.

Каждая инструкция, выполняемая процессором, последовательно проходит все блоки ядра, в каждом из которых совершается своя часть действий, необходимых для выполнения инструкции. Если приступать к обработке новой инструкции только после завершения работы над первой инструкцией, то большая часть блоков ядра процессора в каждый момент времени будет простаивать, а, следовательно, возможности процессора будут использоваться не полностью.

Рассмотрим пример, в котором процессор будет выполнять программу, состоящую из пяти инструкций (К1–К5), без использования принципа конвейеризации. Для упрощения примера примем, что каждый блок ядра процессора выполняет инструкцию за 1 такт.

Такты Выборка инструкции Декодирование инструкции Выборка данных Выполнение инструкции Сохранение результата
1 K1 - - - -
2 - K1 - - -
3 - - K1 - -
4 - - - K1 -
5 - - - - K1
6 K2 - - - -
7 - K2 - - -
8 - - K2 - -
9 - - - K2 -
10 - - - - K2
11 K3 - - - -
12 - K3 - - -
13 - - K3 - -
14 - - - K3 -
15 - - - - K3
16 K4 - - - -
17 - K4 - - -
18 - - K4 - -
19 - - - K4 -
20 - - - - K4
21 K5 - - - -
22 - K5 - - -
23 - - K5 - -
24 - - - K5 -
25 - - - - K5

Как видно из таблицы, для выполнения пяти инструкций процессору понадобилось 25 тактов. При этом в каждом такте четыре из пяти блоков ядра процессора простаивали, т.е. процессор использовал всего 20% своего потенциала. Естественно, в реальных процессорах все сложнее. Разные блоки процессора решают разные по сложности задачи. Сами инструкции тоже отличаются друг от друга по сложности. Но в общем ситуация остается такой же.

Для решения этой проблемы во всех современных процессорах выполнение инструкций построено по принципу конвейера, то есть по мере освобождения блоков ядра, они загружаются обработкой следующей инструкции, не дожидаясь пока предыдущая инструкция выполнится полностью.

Рассмотрим пример выполнения той же программы, состоящей из пяти инструкций, но с использованием принципа конвейеризации.

Такты Выборка инструкции Декодирование инструкции Выборка данных Выполнение инструкции Сохранение результата
1 K1 - - - -
2 K2 K1 - - -
3 K3 K2 K1 - -
4 K4 K3 K2 K1 -
5 K5 K4 K3 K2 K1
6 - K5 K4 K3 K2
7 - - K5 K4 K3
8 - - - K5 K4
9 - - - - K5

Та же программа была выполнена за 9 тактов, что почти 2.8 раза быстрее, чем при работе без конвейера. Как видно из таблицы максимальная загрузка процессора была получена на 5 такте. В этот момент использовались все блоки ядра процессора. А с первого по четвертый такт, включительно, происходило наполнение конвейера.

Так как процессор выполняет команды непрерывно, то, в идеале, он мог бы быть занят на 100%, при этом, чем длиннее был бы конвейер, тем больший выигрыш в производительности был бы получен. Но на практике это не так.

Во-первых, реальный поток команд, обрабатываемый процессором – непоследовательный. В нем часто встречаются переходы. При этом пока команда условного перехода не будет обработана полностью, конвейер не сможет начать выполнение новой команды, так как не знает, по какому адресу она находится.

После условного перехода конвейер приходится наполнять заново. И чем длиннее конвейер, тем дольше это происходит. В результате, прирост производительности от введения конвейера снижается.

Для уменьшения влияния условных переходов на работу конвейера, в ядро процессора вводятся блоки предсказания условных переходов. Основная задача этих блоков – определить, когда будет совершен условный переход и какие команды будут выполнены после совершения условного перехода.

Если условный переход удалось предсказать, то выполнение инструкций по новому адресу начинается раньше, чем будет закончена обработка команды условного перехода. В результате, наполнение конвейера не пострадает.

По статистике, точность блоков предсказания условных переходов в современных процессорах превышает 90%, что позволяет делать достаточно длинные, но при этом хорошо наполняемые конвейеры.

Во-вторых, часто обрабатываемые инструкции – взаимосвязаны, то есть одна из инструкций требует в качестве исходных данных результата выполнения другой инструкции.

В этом случае она может быть выполнена только после полного завершения обработки первой инструкции. Однако современные процессоры могут анализировать код на несколько инструкций вперед и, например, параллельно с первой инструкцией обработать третью инструкцию, которая никак не зависит от первых двух.

В большинстве современных процессорах задача анализа взаимосвязи инструкций и составления порядка их обработки ложится на плечи процессора, что неминуемо ведет к снижению его быстродействия и увеличению стоимости.

Однако все большую популярность получает статическое планирование, когда порядок выполнения программы процессором определяется на этапе компиляции программы. В этом случае инструкции, которые можно выполнить параллельно, объединяются компилятором в одну длинную команду, в которой все инструкции заведомо параллельны. Процессоры, работающие с такими инструкциями, построены на базе архитектура VLIW (Very long instruction word).

2.2.2. Суперскалярность.

Суперскалярность – архитектура вычислительного ядра, при которой наиболее нагруженные блоки могут входить в нескольких экземплярах. Скажем, в ядре процессора блок выборки инструкций может нагружать сразу несколько блоков декодирования.

В этом случае блоки, выполняющие более сложные действия и работающие дольше, за счет параллельной обработки сразу нескольких инструкций не будут задерживать весь конвейер.

Однако параллельное выполнение инструкций возможно, только если эти инструкции – независимые.

Структурная схема ядра конвейера гипотетического процессора, построенного с использованием принципа суперскалярности, приведена на рисунке 1. На этом рисунке в каждом ядре процессора работает несколько блоков декодирования, несколько блоков выборки данных и несколько блоков выполнения инструкций.

2.2.3. Параллельная обработка данных.

Бесконечно повышать производительность процессоров, за счет увеличения тактовой частоты, невозможно. Увеличение тактовой частоты влечет за собой увеличение тепловыделения, уменьшение срока службы и надежности работы процессоров, да и задержки от обращения к памяти сильно снижают эффект от увеличения тактовой частоты. Действительно, сейчас практически не встретишь процессоры с тактовой частотой выше 3.8 ГГц.

Связанные с увеличением тактовой частоты проблемы заставляют разработчиков искать иные пути повышения производительности процессоров. Один из наиболее популярных способов – параллельные вычисления.

Подавляющее большинство современных процессоров имеют два и более ядра. Топовые модели могут содержать и 8, и даже 12 ядер, причем с поддержкой технологии hyper-threading. Преимущества от ввода дополнительных ядер вполне понятны, мы практически получаем несколько процессоров, способных независимо решать каждый свои задачи, при этом, естественно, возрастает производительность. Однако прирост производительности далеко не всегда оправдывает ожидания.

Во-первых, далеко не все программы поддерживают распределение вычислений на несколько ядер. Естественно, можно программы разделять между ядрами, чтобы на каждом ядре работал свой набор независимых программ. Например, на одном ядре работает операционная система с набором служебных программ, на другом пользовательские программы и так далее.

Но это дает выигрыш в производительности до тех пор, пока не появляется программа, требующая ресурсов больше, чем может дать одно ядро. Хорошо, если она поддерживает распределение нагрузки между несколькими ядрами. Но на данный момент общедоступных программ, способных распределить нагрузку между 12 ядрам, да еще в режиме Hyper-Threading, можно «сосчитать на пальцах одной руки». Я, конечно, утрирую, существуют программы, оптимизированные для многопоточных вычислений, но большинству простых пользователей они не нужны. А вот наиболее популярные программы, а тем более игры, пока что «плохо» адаптируются к многоядерным процессорам, особенно, если количество ядер больше четырех.

Во-вторых, усложняется работа с памятью, так как ядер – много, и всем им требуется доступ к ОЗУ. Требуется сложный механизм, определяющий очередность доступа ядер процессора к памяти и к другим ресурсам ЭВМ.

В-третьих, возрастает энергопотребление, а, следовательно, увеличивается тепловыделение и требуется мощная система охлаждения.

Ну и, в-четвертых, себестоимость производства многоядерных процессоров – немаленькая, а, соответственно, и цена на такие процессоры «кусается».

Несмотря на все недостатки, применение процессоров с 2-4 ядрами, несомненно, дает значительный прирост производительности. Однако, на данный момент, применение процессоров с количеством ядер больше четырех не всегда оправдывает ожидание. Однако, в ближайшем будущем, ситуация должна кардинально измениться. Обязательно появится множество программ с поддержкой многопоточности, производительность отдельных ядер возрастет, а их цена снизится.

2.2.4. Технология Hyper-Threading.

Технология Intel Hyper-threading позволяет каждому ядру процессора выполнять две задачи одновременно, по сути, делая из одного реального ядра два виртуальных. Это возможно из-за того, что в таких ядрах сохраняется состояние сразу двух потоков, так как у ядра есть свой набор регистров, свой счетчик команд и свой блок работы с прерываниями для каждого потока. В результате, операционная система видит такое ядро, как два отдельных ядра, и будет с ними работать так же, как работала бы с двуядерным процессором.

Однако остальные элементы ядра для обоих потоков – общие, и делятся между ними. Кроме этого, когда по какой-либо причине один из потоков освобождает элементы конвейера, другой поток использует свободные блоки.

Элементы конвейера могут быть не задействованы, если, например, произошел промах при обращении в КЭШ-память, и необходимо считать данные из ОЗУ, или неверно был предсказан переход, или ожидаются результаты обработки текущей инструкции, или какие-то блоки вообще не используются при обработке данной инструкции и т.д.

Большинство программ не могут полностью нагрузить процессор, так как некоторые, в основном, используют несложные целочисленные вычисления, практически не задействуя блок FPU. Другие же программы, например 3D-студия, требуют массу расчетов с использованием чисел с плавающей точкой, но при этом освобождая некоторые другие исполнительные блоки и так далее.

К тому же практически во всех программах – много условных переходов и зависимых переменных. В результате, использование технологии Hyper-threading может дать существенный прирост производительности, способствуя максимальной загрузке конвейера ядра.

Но не все так просто. Естественно, прирост производительности будет меньше, чем от использования нескольких физических ядер, так как все-таки потоки используют общие блоки одного конвейера и часто вынуждены ждать освобождения требуемого блока. К тому же большинство процессоров уже имеют несколько физических ядер, и при использовании технологии Hyper-threading виртуальных ядер может стать слишком много, особенно, если процессор содержит четыре и больше физических ядра.

Так как на данный момент программ, способных распределять вычисления на большое количество ядер, – крайне мало, то в этом случае результат может разочаровать пользователей.

Есть еще одна серьезная проблема технологии Hyper-Threading – это конфликты, возникающие, когда инструкции разных потоков нуждаются в однотипных блоках. Может сложиться ситуация, когда параллельно будут работать два схожих потока, часто использующие одни и те же блоки. В таком случае прирост производительности будет минимален.

В результате, технология Hyper-Threading очень зависима от типа нагрузки на процессор и может дать хороший прирост производительности, а может быть практически бесполезной.

2.2.5. Технология Turbo Boost.

Производительность большинства современных процессоров в домашних условиях можно немного поднять, попросту говоря разогнать – заставить работать на частотах, превышающих номинальную, т.е. заявленную производителем.

Частота процессора рассчитывается, как частота системной шины, умноженная на некий коэффициент, называемый множителем. Например, процессор Core i7-970 работает с системной шиной DMI на базовой частоте – 133 МГц, и имеет множитель – 24. Таким образом, тактовая частота ядра процессора составит: 133 Мгц*24= 3192 Мгц.

Если в настройках BIOS увеличить множитель или поднять тактовую частоту системной шины, то тактовая частота процессора увеличится, а, соответственно, увеличится и его производительность. Однако процесс этот – далеко небезопасный. Из-за разгона процессор может работать нестабильно или вообще выйти из строя. Поэтому к разгону нужно подходить ответственно и тщательно контролировать параметры работы процессора.

С появление технологии Turbo Boost все стало гораздо проще. Процессоры с этой технологией могут сами динамически, на короткий промежуток времени, повышать тактовую частоту, тем самым, увеличивая свою производительность. При этом процессор контролирует все параметры своей работы: напряжение, силу тока, температуру и т.д., не допуская сбоев и тем более выхода из строя. Например, процессор может отключить неиспользуемые ядра, тем самым, понизив общую температуру, а взамен увеличить тактовую частоту остальных ядер.

Так как на данный момент существует не очень много программ, использующих для обработки данных все процессорные ядра, особенно, если их больше четырех, то применение технологии Turbo Boost позволяет значительно поднять производительность процессора, особенно, при работе с однопоточными приложениями.

2.2.6. Эффективность выполнения команд.

В зависимости от типов обрабатываемых инструкций и способа их исполнения, процессоры подразделяются на несколько групп:

  • на классические процессоры CISC;
  • на процессоры RISC с сокращенным набором команд;
  • на процессоры MISC c минимальным набором команд;
  • на процессоры VLIW с набором сверхдлинных команд.

CISC (Complex instruction set computer) – это процессоры со сложным набором команд. Архитектура CISC характеризуется:

  • сложными и многоплановыми инструкциями;
  • большим набором различных инструкций;
  • нефиксированной длиной инструкций;
  • многообразием режимов адресации.

Исторически, процессоры с архитектурой CISC появились первыми, и их появление было обусловлено общей тенденцией разработки первых ЭВМ. ЭВМ стремились сделать более функциональными и в то же время простыми для программирования. Естественно, для программистов вначале было удобнее иметь широкий набор команд, чем реализовывать каждую функцию целой отдельной подпрограммой. В результате, объем программ сильно сокращался, а вместе с ним и трудоемкость программирования.

Однако такая ситуация продолжалась недолго. Во-первых, с появлением языков высокого уровня отпала необходимость непосредственного программирования в машинных кодах и на ассемблере, и, во-вторых, со временем количество различных команд сильно выросло, а сами инструкции усложнились. В результате, большинство программистов, в основном, использовали какой-то определенный набор инструкций, практически игнорируя наиболее сложные инструкции.

В результате, программисты уже не имели особой выгоды от широкого набора инструкций, так как компиляция программ стала автоматической, а сами процессоры обрабатывали сложные и разнообразные инструкции медленно, в основном, из-за проблем с их декодированием.

К тому же новые сложные инструкции разработчики процессоров отлаживали меньше, так как это был трудоемкий и сложный процесс. В результате, некоторые из них могли содержать ошибки.

Ну и, естественно, чем сложнее инструкции, чем больше действий они выполняют, тем сложнее их выполнение распараллеливать, и, соответственно, тем менее эффективно они загружают конвейер процессора.

Однако к этому моменту уже было разработано огромное количество программ для процессоров с CISC архитектурой, поэтому экономически было невыгодно переходить на принципиально новую архитектуру, даже дающую выигрыш в производительности процессора.

Поэтому был принят компромисс, и CISC процессоры, начиная с Intel486DX, стали производить с использованием RISC-ядра. Т.е., непосредственно перед исполнением, сложные CISC-инструкции преобразуют в более простой набор внутренних инструкций RISC. Для этого используют записанные в размещенном внутри ядра процессора ПЗУ наборы микрокоманд – серии простых инструкций, в совокупности выполняющих те же действия, что и одна сложная инструкция.

RISC (Reduced Instruction Set Computer) – процессоры с сокращенным набором инструкций.

В концепции RISC-процессоров предпочтение отдается коротким, простым и стандартизированным инструкциям. В результате, такие инструкции проще декодировать и выполнять, а, следовательно, устройство процессора становится так же проще, так как не требуется сложных блоков для выполнения нестандартных и многофункциональных инструкций. В результате, процессор становится дешевле, и появляется возможность дополнительно поднять его тактовую частоту, за счет упрощения внутренней структуры и уменьшения количества транзисторов, или снизить энергопотребление.

Так же простые RISC-инструкции гораздо проще распараллеливать, чем CISC-инструкции, а, следовательно, появляется возможность больше загрузить конвейер, ввести дополнительные блоки обработки инструкций и т.д.

Процессоры, построенные по архитектуре RISC, обладают следующими основными особенностями:

  • фиксированная длина инструкций;
  • небольшой набор стандартизированных инструкций;
  • большое количество регистров общего назначения;
  • отсутствие микрокода;
  • меньшее энергопотребление, по сравнению с CISC-процессорами аналогичной производительности;
  • более простое внутреннее устройство;
  • меньшее количество транзисторов, по сравнению с CISC-процессорами аналогичной производительности;
  • отсутствие сложных специализированных блоков в ядре процессора.

В результате, хотя RISC-процессоры и требуют выполнения большего количества инструкций для решения одной и той же задачи, по сравнению с CISС-процессорами, они, в общем случае, показывают более высокую производительность. Во-первых, выполнение одной RISC-инструкции занимает гораздо меньше времени, чем выполнение CISC-инструкции. Во-вторых, RISC-процессоры более широко используют возможности параллельной работы. В-третьих, RISC-процессоры могут иметь более высокую тактовую частоту, по сравнению с CISC-процессорами.

Однако, несмотря на явное преимущество RISC, процессоры не получили столь серьезного распространения, как CISC. Правда, связано это в основном не с тем, что они по каким-то параметрам могли быть хуже CISC-процессоров. Они не хуже. Дело в том, что СISC-процессоры появились первыми, а программное обеспечение для CISC -процессоров – несовместимо с RISC-процессорами.

В результате, экономически крайне невыгодно переписывать все программы, которые уже разработаны, отлажены и используются огромным количеством пользователей. Вот так и получилось, что теперь мы вынуждены использовать CISC-процессоры. Правда, как я уже говорил, разработчики нашли компромиссное решение данной проблемы, и уже очень давно в CISC-процессорах используют RISC-ядро и замену сложных команд на микропрограммы. Это позволило несколько сгладить ситуацию. Но все же RISC-процессоры по большинству параметров выигрывают даже у CISC-процессоров с RISC-ядром.

MISC (Minimal Instruction Set Computer) – дальнейшее развитие архитектуры RISС, основанное на еще большем упрощении инструкций и уменьшении их количества. Так, в среднем, в MISC-процессорах используется 20-30 простых инструкций. Такой подход позволил еще больше упростить устройство процессора, снизить энергопотребление и максимально использовать возможности параллельной обработки данных.

VLIW (Very long instruction word) – архитектура процессоров, использующая инструкции большой длины, содержащие сразу несколько операций, объединенных компилятором для параллельной обработки. В некоторых реализациях процессоров длина инструкций может достигать 128 или даже 256 бит.

Архитектура VLIW является дальнейшим усовершенствованием архитектуры RISC и MISC с углубленным параллелизмом.

Если в процессорах RISC организацией параллельной обработки данных занимался сам процессор, при этом, затрачивая часть ресурсов на анализ инструкций, выявление зависимостей и предсказание условных переходов (причем, зачастую, процессор мог ошибаться, например, в предсказании условных переходов, тем самым внося серьезные задержки в обработку инструкций, или просматривать код программы на недостаточную глубину для выявления независимых операций, которые могли бы выполняться параллельно), то в VLIW-процессорах задача оптимизации параллельной работы возлагалась на компилятор, который не был ограничен ни во времени, ни в ресурсах и мог проанализировать всю программу для составления оптимального для работы процессора кода.

В результате, процессор VLIW выигрывал не только от упразднения накладных расходов на организацию параллельной обработки данных, но и получал прирост производительности, из-за более оптимальной организации параллельного выполнения инструкций.

Кроме этого упрощалась конструкция процессора, так как упрощались или вовсе упразднялись некоторые блоки, отвечающие за анализ зависимостей и организацию распараллеливания обработки инструкций, а это, в свою очередь, вело к снижению энергопотребления и себестоимости процессоров.

Однако даже компилятору тяжело справляться с анализом кода и организацией его распараллеливания. Часто код программы был сильно взаимозависимый, и, в результате, в инструкции компилятору приходилось вставлять пустые команды. Из-за этого программы для VLIW-процессоров могли быть гораздо длиннее, чем аналогичные программы для традиционных архитектур.

Первые VLIW-процессоры появились в конце 1980-х годов и были разработаны компанией Cydrome. Так же к процессорам с этой архитектурой относятся процессоры TriMedia фирмы Philips, семейство DSP C6000 фирмы Texas Instruments, Эльбру?с 2000 – процессор российского производства, разработанный компанией МЦСТ при участии студентов МФТИ и др. Поддержка длинных инструкций с явным параллелизмом есть и в процессорах семейства Itanium.

2.3. Способы снижения энергопотребления процессора.

Не менее, чем производительность, для процессора важен и такой параметр, как энергопотребление. Особенно остро вопрос энергопотребления встал сейчас, когда наблюдается настоящий бум популярности портативных устройств.

Нашу жизнь уже нельзя представить комфортной без использования ноутбуков, планшетных компьютеров и смартфонов. Однако единственное, что омрачает эту тенденцию, – это время автономной работы подобных устройств. Так ноутбуки, в среднем, могут автономно работать 3-5 часов, планшеты – чуть больше, смартфоны уже могут протянуть при полной нагрузке почти сутки и то не все. Но все это крайне мало для комфортной работы с ними.

Время автономной работы этих устройств напрямую зависит от их энергопотребления, и немалая доля энергопотребления приходится на процессор. Для снижения энергопотребления процессоров используются различные способы и технологии. Давайте рассмотрим наиболее популярные из них.

Самый простой способ снизить энергопотребление и тепловыделение процессора – это уменьшить его тактовую частоту и напряжение, так как энергопотребление процессора пропорционально квадрату его рабочего напряжения и пропорционально тактовой частоте. Наиболее выгодно на энергопотреблении сказывается снижение напряжения. Однако при понижении напряжения рано или поздно уменьшается и тактовая частота, что естественно повлечет за собой снижение производительности.

Однако, зачастую, энергопотребление бывает более критическим параметром работы, и некоторое снижение производительности допустимо. Так большинство мобильных версий процессоров и процессоров для встраиваемых систем имеют тактовую частоту и рабочее напряжение гораздо ниже, чем у их собратьев для настольных версий.

Но не всегда производители устанавливают оптимальное сочетание напряжения и тактовой частоты. Многие мобильные процессоры с установленной тактовой частотой могли бы работать с более низким напряжением, что позволило бы существенно продлить время автономной работы портативного компьютера.

Для получения оптимального соотношения производительности к энергопотреблению, необходимо подобрать такое напряжение, при котором на заданной тактовой частоте процессор будет стабильно работать.

Тактовая частота определяется, исходя из потребностей пользователя, затем для нее подбирается минимальное рабочее напряжение путем постепенного снижения напряжения и тестирования процессора под нагрузкой.

Существуют и не столь кардинальные пути решения этой проблемы.

Например, технология EIST (Enhanced Intel SpeedStep Technology) позволяет динамически изменять энергопотребление процессора, за счет изменения тактовой частоты процессора и напряжения. Изменение тактовой частоты происходит, за счет уменьшения или увеличения коэффициента умножения.

О коэффициенте умножения я уже упоминал выше, но повторюсь. Тактовая частота процессора рассчитывается, как тактовая частота системной шины, умноженная на некий коэффициент, называемый коэффициентом умножения. Уменьшение или увеличение этого коэффициента ведет к уменьшению или увеличению тактовой частоты процессора и к снижению или увеличению рабочего напряжения.

В случаях, когда процессор используется не полностью, его тактовую частоту можно снизить, уменьшая коэффициент умножения. Как только пользователю потребуется больше вычислительных ресурсов, коэффициент умножения будет повышен, вплоть до своего номинального значения. Таким образом, удается несколько снизить энергопотребление.

Аналогичная технология для уменьшения энергопотребления, основанная на динамическом изменении напряжения и тактовой частоты, в зависимости от нагрузки на процессор, используется и компанией AMD, называется она - Cool’n’Quiet .

В абсолютном большинстве случаев вычислительные машины либо вовсе простаивают, либо используются лишь на долю своих возможностей. Например, для просмотра фильма или набора текста вовсе не нужно тех огромных вычислительных возможностей, которыми обладают современные процессоры. Тем более эти мощности не нужны и при простое компьютера, когда пользователь отошел или просто решил сделать небольшой перерыв. Снижая в такие моменты тактовую частоту процессора и его напряжение, можно получить очень серьезный прирост в экономии энергопотребления.

Параметры работы технологии EIST можно настраивать, используя BIOS и программное обеспечение операционной системы, и устанавливать требуемые для конкретного случая профили управления энергопотреблением, тем самым балансируя производительность процессора и его энергопотребление.

Естественно, разработчики стараются оптимизировать и саму структуру процессора для снижения энергопотребления и возможности работы процессора при сверхнизких напряжениях. Однако эта задача – крайне сложная и трудоемкая. Опытные образцы процессоров уже практически вплотную приблизились к порогу минимального рабочего напряжения и уже с трудом отличают напряжение логической единицы от логического нуля. Однако, несмотря на это, разработчики процессоров, в том числе инженеры корпорации Intel, обещают уменьшить энергопотребление современных процессоров аж в 100 раз за ближайшие десять лет. Ну что же, подождем и посмотрим, что у них выйдет.

3. КЭШ-память.

Несмотря на все технологии и уловки разработчиков, производительность процессора все-таки напрямую зависит от скорости выборки команд и данных из памяти. И даже, если процессор имеет сбалансированный и продуманный конвейер, использует технологию Hyper-Threading и так далее, но не обеспечивает должную скорость выборки данных и команд из памяти, то, в результате, общая производительность ЭВМ не оправдает ваших ожиданий.

Поэтому один из важнейших параметров устройства процессора – это КЭШ-память, призванная сократить время выборки команд и данных из основной оперативной памяти и выполняющая роль промежуточного буфера с быстрым доступом между процессором и основной оперативной памятью.

КЭШ-память строится на базе дорогой SRAM-памяти (static random access memory), обеспечивающей доступ к ячейкам памяти гораздо более быстрый, чем к ячейкам DRAM-памяти (dynamic random access memory), на базе которой построена оперативная память. К тому же SRAM-память не требует постоянной регенерации, что так же увеличивает ее быстродействие. Однако более подробно устройство SRAM, DRAM и других типов памяти рассмотрим в следующей статье, а сейчас более подробно рассмотрим принцип работы и устройства КЭШ-памяти.

КЭШ-память делится на несколько уровней. В современных процессорах, обычно, бывает три уровня, а в некоторых топовых моделях процессоров иногда встречается и четыре уровня КЭШ-памяти.

КЭШ-память более высокого уровня всегда больше по размеру и медленнее КЭШ-памяти более низкого уровня.

Самая быстрая и самая маленькая КЭШ-память – это КЭШ-память первого уровня. Она обычно работает на частоте процессора, имеет объем несколько сотен килобайт и располагается в непосредственной близости от блоков выборки данных и команд. При этом она может быть единой (Принстонская архитектура) или разделяться на две части (Гарвардская архитектура): на память команд и память данных. В большинстве современных процессоров используют разделенную КЭШ-память первого уровня, так как это позволяет одновременно с выборкой команд осуществлять выборку данных, что крайне важно для работы конвейера.

КЭШ-память второго уровня – более медленная (время доступа, в среднем, 8-20 тактов процессора), но зато имеет объем несколько мегабайт.

КЭШ-память третьего уровня – еще медленнее, но имеет сравнительно большой объем. Встречаются процессоры с КЭШ-памятью третьего уровня больше 24 Мб.

В многоядерных процессорах, обычно, последний уровень КЭШ-памяти делают общим для всех ядер. Причем, в зависимости от нагрузки на ядра, может динамически изменяться отведенный ядру объем КЭШ-памяти последнего уровня. Если ядро имеет высокую нагрузку, то ему выделяется больше КЭШ-памяти, за счет уменьшения объема КЭШ-памяти для менее нагруженных ядер. Не все процессоры обладают такой возможностью, а только поддерживающие технологию Smart Cache (например, Intel Smart Cache или AMD Balanced Smart Cache).

КЭШ-память более низкого уровня – обычно, индивидуальная для каждого ядра процессора.

Мы рассмотрели, как устроена КЭШ-память, давайте теперь разберемся, как она работает.

Процессор считывает из основной оперативной памяти данные и заносит их в КЭШ-память всех уровней, замещая данные, к которым давно и наиболее редко обращались.

В следующий раз, когда процессору понадобятся эти же данные, они будут считаны уже не из основной оперативной памяти, а из КЭШ-памяти первого уровня, что значительно быстрее. Если к этим данным процессор долго не будет обращаться, то они будут постепенно вытеснены из всех уровней КЭШ-памяти, вначале из первого, так как он самый маленький по объему, затем из второго и так далее. Но, даже если эти данные останутся только в третьем уровне КЭШ-памяти, все равно обращение к ним будет быстрее, чем к основной памяти.

Однако, чем больше уровней КЭШ-памяти, тем сложнее алгоритм замещения устаревших данных и тем больше времени тратится на согласования данных во всех уровнях КЭШ-памяти. В результате, выигрыш от скорости работы КЭШ-памяти быстро сходит на нет. К тому же SRAM-память – очень дорогая, и при больших объемах, а, как помните, каждый новый уровень КЭШ-памяти должен быть больше предыдущего, быстро снижается показатель цена-качество, что крайне негативно сказывается на конкурентоспособности процессора. Поэтому на практике больше четырех уровней КЭШ-памяти не делают.

Ситуация с КЭШ-памятью дополнительно усложняется в многоядерных процессорах, каждое ядро которых содержит свою КЭШ-память. Необходимо вводить дополнительную синхронизацию данных, хранящихся в КЭШ-памяти разных ядер. Например, один и тот же блок данных основной оперативной памяти был занесен в КЭШ-память первого и второго ядра процессора. Затем первый процессор изменил этот блок памяти. Получается, что в КЭШ-памяти второго процессора лежат уже устаревшие данные и необходимо их обновить, а это дополнительная нагрузка на КЭШ-память, что приводит к снижению общего быстродействия процессора. Эта ситуация тем сложнее, чем больше ядер в процессоре, чем больше уровней КЭШ-памяти и чем больше их объем.

Но, несмотря на такие трудности в работе с КЭШ-памятью, ее применение дает явный прирост скорости работы без существенного увеличения стоимости ЭВМ. И пока не будет придумана оперативная память, которая сможет по скорости соперничать с SRAM-памятью, а по цене – с DRAM-памятью, будет применяться иерархическая организация оперативной памяти с использованием нескольких уровней КЭШ-памяти.

Пожалуй, на этом закончим обзор устройства процессора, так как обзор системных шин и принцип их работы приводился в статье «Устройство и назначение материнской платы» , а описание контроллера основной оперативной памяти, часто входящего в состав процессора, типов оперативной памяти и принципов ее работы будет в следующей статье.


Доброго времени суток!

Я думаю, почти каждый пользователь, хотя бы с небольшим опытом, сталкивался с подобной проблемой: работаешь-работаешь за компьютером, а потом начинаешь замечать, что он как-то медленно реагирует на нажатие кнопок мышки, клавиатуры, тормозит...

Очень часто причиной медленной работы и тормозов - является загрузка процессора, иногда она доходит до 100%!

Решить эту проблему не всегда просто, тем более что ЦП может быть загружен и без видимой на то причины (т.е. возможно вы и не запускали никаких ресурсоемких программ: игр, видеоредакторов и пр.).

В этой статье рассмотрю последовательность действий, что можно предпринять, чтобы убрать загрузку ЦП и вернуть компьютер к нормальной производительности.

Первое, что необходимо попробовать - это определить процесс или программу, которая нагружает ЦП. Как бывает в большинстве случаев: была запущена какая-нибудь программа (или игра), затем пользователь из нее вышел, а процесс с игрой остался, который и нагружает процессор...

Каким процессом, программой загружен процессор

Самый быстрый способ определить, какая программа нагружает ЦП - это вызвать диспетчер задач (кнопки: Ctrl+Shift+Esc ).

В диспетчере задач откройте вкладку "Процессы" и отсортируйте приложения по нагрузке на ЦП. На скриншоте ниже, видно, что львиную долю ЦП (~84%) съедает браузер Firefox (хотя он у меня даже не запущен...).

Если у вас есть подобная "скрытая" программа - то тут же из диспетчера задач ее можно закрыть (достаточно нажать на нее правой кнопкой мышки...).

Примечание

В Windows есть свой мониторинг ресурсов, который так же можно использовать для просмотра загрузки процессора, памяти, диска и сети. Чтобы его вызвать, нажмите кнопки Win+R , затем введите в строку "Открыть" команду resmon и нажмите Enter .

Важно!

В некоторых случаях диспетчер задач не позволяет вычислить причину загрузки процессора. Кстати, процессор может быть загружен и не на 100%, а, скажем, на 20-50%...

Если диспетчер задач не дал информации к размышлению - рекомендую воспользоваться одной утилитой - Process Explorer (кстати, расположена на сайте Microsoft...).

Process Explorer (поиск "невидимой" причины тормозов)

Отличная программа, которая не раз меня выручала! Основное ее направление работы - показать вам ВСЕ процессы и программы, запущенные на компьютере (от нее, наверное, не уйдет никто...). Таким образом, вы сможете определить наверняка, какой именно процесс нагружает ЦП.

Ниже скриншот очень показательный:

  • System idle process - это показатель в % бездействия системы. Т.е. на первой половине скрина ниже - процессор почти на 95% бездействует (именно так и должно быть, если на нем открыто пару-тройка программ: браузер, проигрыватель);
  • а на второй части скрина System idle process составляет 65%, но hardware interrupts and DPCs аж 20% (а временами доходят и до 70-80% ! Такого быть не должно. Вообще, interrupts (это системные прерывания) при нормальной работе, редко уходят за пределы нескольких процентов! Вот вам и причина тормозов и загрузки компьютера!
  • кстати, очень часто систему грузит процесс svchosts.exe . Вообще, это системный процесс, но есть ряд вирусов, которые маскируются под него и выдают себя за него. Ниже рассмотрим вопрос, как их отловить...

Process Explorer: на первой части скриншота - все нормально, на второй - процессор загружен на ~20% системными прерываниями (hardware interrupts and DPCs).

Если ЦП грузит interrupts

Если проблема связана hardware interrupts and DPCs - то скорее всего проблемы связаны с драйверами. Точнее с их конфликтом межу собой, а еще более вероятней, несовместимостью с вашей ОС Windows. Причем, даже если в описании к драйверу значится ваша версия Windows - это не 100% гарантия совместимости.

Особое внимание обратите на драйверы: видеокарты, чипсета мат. платы, сетевой карты, Wi-Fi, звуковой карты. Рекомендую скачать их сразу нескольких версий и поочередно попробовать.

Реже проблема связана с вирусами, еще реже с периферийным оборудованием: принтер, сканер, сетевые карты и т.д.

Проверка и обновление драйверов

Иногда подобрать подходящие драйвера для компьютера/ноутбука далеко не так просто, как кажется, на первый взгляд... Вообще, обычно, новая версия драйвера работает лучше старой (но иногда - все ровно наоборот). Если у вас загрузка ЦП связана с hardware interrupts and DPCs - рекомендую:

  1. попробовать установить драйвера с официального сайта производителя вашего оборудования. Обычно, для этого требуется определить производителя - для этого можно использовать спец. утилиты для определения характеристик ПК - ;
  2. если сайт вы не нашли или не смогли определить производителя, можно попробовать воспользоваться какой-нибудь спец. утилитой по обновлению драйверов:
  3. если при установке возникли проблемы с удалением старого драйвера из системы, рекомендую эту инструкцию:

Чтобы узнать, есть ли у вас в системе устройства, для которых нет драйверов - откройте диспетчер устройств . Для этого вызовите меню "Выполнить" - кнопки Win+R , введите devmgmt.msc (пример на скрине ниже).

Поиск вирусов

Вирусы - могут быть причиной всего, чего угодно... Обычно, когда процессор загружен из-за вирусов - можно найти какой-нибудь процесс, который грузит систему. Чаще всего, этот процесс системный: например, вирусы маскируются под процесс svchost.exe - даже пользователю с опытом удается не сразу найти и опознать среди реальных процессов, вирусный (но об этом файле будет рассказано ниже) ...

  1. В Windows XP, 7 : можно нажать при загрузке ОС (сразу после включения ПК) несколько раз клавишу F8 - должно появиться "черное" окно с выбором вариантов загрузки;
  2. в Windows 8, 10: нажать Win+R , ввести команду msconfig . Далее в разделе выбрать ОС Windows и поставить галочку напротив пункта "Безопасный режим" . Сохранить настройки и перезагрузить ПК (скриншот ниже).

А уже из безопасного режима целесообразно запускать проверку на вирусы. Для этого не обязательно иметь на компьютере установленный антивирус - есть специальные утилиты, которые не нужно устанавливать.

Периферийное оборудование

Если проблема до сих пор не была найдена, рекомендую попробовать отключить от ноутбука (компьютера), все лишнее: принтер, сканер, мышку и пр.

Так же еще раз заострю внимание на диспетчере устройств (точнее на драйверах). Возможно, для какого-то периферийного оборудования не установлены драйвера в системе и горит восклицательный знак ...

Особое внимание обратите на старые устройства, которые, возможно и работают в новой ОС Windows, но драйвера вы для них устанавливали "принудительно" (например, Windows могла предупреждать, что нет подписи, и вы продолжили установку) ...

Вообще, довольно сложно найти истинного виновника в данном случае. Если в безопасном режиме процессор не нагружается - рекомендую попробовать удалять поочередно драйвера на периферийное оборудование и смотреть, как себя поведен нагрузка.

В помощь! Как удалить старые или лишние "дрова" -

Svchost.exe грузит процессор - что это?

Очень часто грузит процессор файл svchost.exe - по крайней мере, так говорит диспетчер задач . Дело в том, что это основной процесс для загрузки служб - т.е., грубо говоря, нужный системный процесс, без которого не обойтись...

Здесь есть два варианта случаев:

  • под этот процесс часто маскируются вирусы, а отличить реальный svchost от маскирующегося - даже опытным пользователям не всегда под силу;
  • реальный svchost может нагружать систему (при определенных ситуациях).

Как определить: какой svchost.exe файл системный, а какой нет?

Когда ее запустите, нужно перейти в меню Сервис/Диспетчер процессов (см. скриншот ниже). Далее вы увидите ВСЕ процессы в системе - их нужно отсортировать по названию (так удобнее, мне кажется...).

Суть в чем: все системные процессы, о которых знает AVZ, помечены зеленым цветом. Т.е. если у вас в списке будут svchost черного цвета - присмотритесь к ним очень внимательно, они, скорее всего, вирусные.

Кстати, при помощи этой AVZ можно проанализировать и все другие подозрительные процессы.

Отключение автоматического обновления Windows

Довольно часто svchost грузит процессор из-за включенного автоматического обновления Windows. Я предлагаю ее отключить (ничего плохого в этом нет - просто пару раз в месяц будете вручную проверять обновления - 1-2 раза нажать мышкой...).

Для начала нужно открыть вкладку службы . Самый быстрый способ сделать это - нажать кнопку WIN+R , ввести services.msc и нажать Enter (как на скрине ниже).

  1. тип запуска поставьте "Отключена";
  2. и нажмите кнопку "Остановить".

Сохраните настройки и перезагрузите компьютер.

Нет ли перегрева? Проверка температуры процессора

Возможная причина загрузки процессора может крыться в перегреве. Причем, если раньше у вас все было нормально - это совсем не означает, что сейчас он не может начать перегреваться.

Чаще всего, причиной перегрева является:

  • пыль (особенно если давно не чистили от нее системный блок). Пыль забывает вентиляционные отверстия, воздух плохо начинает циркулировать в корпусе устройства - и горячий воздух от процессора остается на "месте", и температура начинает расти.
  • Самый легкий способ избавиться от пыли - открыть крышку системного блока и выдуть пыль с помощью пылесоса (включив режим реверса). все сложнее - если раньше никогда не разбирали его, рекомендую отдать спецам...
  • высокая температура в помещении . Обычно, это происходит в жаркую погоду летом, когда температура за окном может существенно повыситься. В этом случае можно открыть боковую крышку системного блока и направить в его сторону обычный вентилятор. Для ноутбука в продаже есть специальные охлаждающие подставки.
  • сломавшийся кулер (или он так же мог забиться пылью). Здесь совет простой: замена или чистка.

В помощь!

Признаки, по которым можно заподозрить перегрев:

  1. компьютер (ноутбук) начинает зависать, может появляться синий экран, внезапная перезагрузка или выключение;
  2. сильный гул кулера - особенно это заметно у ноутбуков. Ваша рука, если приблизиться к левому боку (где, обычно, у ноутбуков вентиляционные отверстия) так же может почувствовать выход горячего воздуха, иногда даже не терпит его ☝.
  3. вылет различных приложений с ошибками.

Чтобы узнать температуру процессора - рекомендую воспользоваться какой-нибудь утилитой для определения характеристик ПК. Мне, например, симпатичны Speccy и Aida 64. Скриншот температуры процессора из Speccy вы можете увидеть ниже (t=49 °C, градусов Цельсия).

Какой должна быть температура процессора?

Очень популярный вопрос, на который нельзя дать однозначного ответа. Дело в том, что у разных производителей - разные критические температуры.

Дополнение от 1.10.19.

Температура процессора Intel: как ее узнать; какую считать нормальной, а какую перегревом -

Для персонального компьютера

Вообще, идеальный вариант - это посмотреть модель своего процессора и открыть сайт производителя: на нем всегда указаны критические температуры.

Если говорить в общем, то если температура вашего процессора до 40°C (градусов Цельсия) - то с ним все в порядке, система охлаждения справляется. Температура выше 50°C - может указывать на проблемы в системе охлаждения (или на большое количество пыли). Все что выше 60 градусов - необходимо пристально просмотреть и принять меры: почистить от пыли, установить дополнительные кулеры (или заменить старые).

Для ноутбука

Что касается ноутбуков - то здесь планка несколько иная. Так как пространство в ноутбуке ограничено - то процессоры здесь нагреваются выше. Например, не редкость, что рабочая температура в нагрузке у многих процессоров составляет около 70-80°C (особенно у игровых моделей).

При простое, обычно, эта планка составляет около 40-50°C. Вообще, стоит начинать беспокоиться (для большинства современных ноутбуков), если температура процессора поднимается выше 75-80°C (по крайней мере уточнить, нормальная ли это для вашего устройства).

Чаще всего, такая высокая температура достигается при запуске игр, редакторов, и других тяжелых приложений.

Кстати, многие опытные пользователи (да и некоторые спецы) вторят про критические 105°C для современных ноутбуков. Я скажу так, работать-то ноутбук может и будет при 90-95°C, и даже, возможно, при 100°C - но главный вопрос: сколько? Вообще, эта тема дискуссионная для многих...

PS

Последний совет. Иногда найти и устранить причины высокой нагрузки на процессор и тормозов компьютера - дело достаточно утомительное и не простое.