G белки типы виды функции. Строение белков

G-белки (ГТФ-связывающие белки) - универсальные посредники при передаче сигналов от рецепторов к ферментам клеточной мембра­ны, катализирующим образование вторичных посредников гормонального сигнала. G-белки - олигомеры, состоящие из α, β и γ-субъединиц. Состав димеров βγ незначительно раз­личаются в разных тканях, но в пределах одной клетки все G-белки, как правило, имеют оди­наковый комплект βγ-субъединиц. Поэтому G-белки принято различать по их α-субъединицам.. Выявлено 16 генов, кодирующих различные α-субъединицы G-белков. Некоторые из генов имеют более одного белка, вследствие альтер­нативного сплайсинга РНК.

Каждая α-субъединица в составе G -белка имеет специфические центры:

Связывания ГТФ или ГДФ;

Взаимодействия с рецептором;

Связывания с βγ-субъединицами;

Фосфорилирования под действием протеин­киназы С;

Взаимодействия с ферментом аденилатциклазой или фосфолипазой С.

В структуре G -белков отсутствуют α-спиральные, пронизывающие мембрану домены. G -бел­ки относят к группе «заякоренных» белков (рис. 5-34).

Рис. 5-34. Положение G-белков в мембране. Для ассоциации G-белков важно ацилирование α-протомеров алифатическими радикалами жирных кислот, миристиновой кислоты (М) или изопреновой. γ-Субъединица G-белка имеет геранил-геранильную группу (Г), связанную тиоэфирной связью с остатком цистеина С-конца.

Регуляция активности G -белков

Различают неактивную форму G -белка - комплекс αβγ-ГДФ и активированную форму αβγ -ГТФ. Активация G-белка происходит при взаимодействии с комплексом активатор-рецеп­тор, изменение конформации G-белка снижает сродство α-субъединицы к молекуле ГДФ и уве­личивает к ГТФ. Замена ГДФ на ГТФ в актив­ном центре G-белка нарушает комплементарность между α-ГТФ и βγ-субъединицами. Рецептор, связанный с сигнальной молекулой, может активировать большое количество моле­кул G-белка, таким образом обеспечивая уси­ление внеклеточного сигнала на этом этапе (рис. 5-35).



Рис. 5-35. Цикл функционирования G-белка. R s - рецептор; Г - гормон; АЦ - аденилатциклаза.

Активированная α-субъединица G-белка (α-ГТФ) взаимодействует со специфическим белком клеточной мембраны и изменяет его ак­тивность. Такими белками могут быть фермен­ты аденилатциклаза, фосфолипаза С, фосфодиэстераза цГМФ, Na + -каналы, К + -каналы.

Следующий этап цикла функционирования G-белка - дефосфорилирование ГТФ, связанного с α-субъединицей, причём фермент, катализи­рующий эту реакцию, - сама α-субъединица.

Дефосфорилирование приводит к образованию комплекса α-ГДФ, который не комплементарен специфическому белку мембраны (например, аденилатциклазе), но имеет высокое сродство к βγ-протомерам. G-белок возвращается к неак­тивной форме - αβγ-ГДФ. При последующей активации рецептора и замене молекулы ГДФ на ГТФ цикл повторяется снова. Таким обра­зом, α-субъединицы G-белков совершают чел­ночное движение, перенося стимулирующий или ингибирующий сигнал от рецептора, который ак­тивирован первичным посредником (например, гормоном), на фермент, катализирующий обра­зование вторичного посредника.

Некоторые формы протеинкиназ могут фосфорилировать α-субъединицы G-белков. Фосфорилированная α-субъединица не комплементарна специфическому белку мембраны, например, аденилатциклазе или фосфолипазе С, поэтому не может участвовать в передаче сигнала.

Г. аденилатциклаза

Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ (рис. 5-36), - клю­чевой фермент аденилатциклазной системы пе­редачи сигнала. Аденилатциклаза обнаружена во всех типах клеток.

Рис. 5-36. Образование циклического аденозинмонофосфата (цАМФ).

Фермент относят к группе интегральных бел­ков клеточной мембраны, он имеет 12 транс­мембранных доменов. Внеклеточные фраг­менты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного по средника, участвующего в регуляции активности фермента протеинкиназы А.

На активность аденилатциклазы оказывают влияние как внеклеточные, так и внутриклеточные регуляторы. Внеклеточные регулятор (гормоны, эйкозаноиды, биогенные амины) осуществляют регуляцию через специфические рецепторы, которые с помощью α-субъединиц G-белков передают сигналы на аденилатциклазу. αs - Субъединица (стимулирующая) при взаимодействии с аденилатциклазой активирует фермент, αi- Субъединица (ингибирующая) ингибирует фермент. В свою очередь, аденилатциклаза стимурирует проявление ГТФ- фосфотазной активности α- субъединиц. В результате дефосфорилирования ГТФ образуются субъединицы а s -ГДФ и а i -ГДФ, не комплементарные аденилатциклазе.

Из 8 изученных изоформ аденилатциклазы 4 - Са 2+ -зависимые (активируются Са 2+). Ре­гуляция аденилатциклазы внутриклеточным кальцием позволяет клетке интегрировать ак­тивность двух основных вторичных посредни­ков цАМФ и Са 2+ .

Д. фосфолипазы

Фосфолипазы - ферменты класса гидролаз, катализирующие катаболизм глицерофосфолипидов. Различают фосфолипазы секреторные, входящие в состав панкреатического сока, и клеточные фосфолипазы. Клеточные фосфоли­пазы А 1 , А 2 , D, С различаются по специфично­сти к отщепляемой группе. Все фосфолипазы - кальций зависимые ферменты (рис. 5-37).

Рис. 5-37. Действие фосфолипаз.

Фосфолипаза С - фермент, гидролизующий фосфоэфирную связь в глицерофосфолипидах. В клетках человека идентифицировано 10 изоформ фосфолипазы С, различающихся по молекулярной массе, локализации, способу регуляции, субстратной специфичности. В структуре всех изоформ фосфолипазы С отсутствуют гидрофобные домены, которые могли бы обеспечить их взаимодействие с мембраной. Однако некоторые формы фосфолипазы С связаны с помощью гидрофобного «якоря» - ацильного остатка миристиновой кислоты или за счёт взаимодействия с поверхностью бислоя. Каталитическая активность всех изоформ фосфолипазы С зависит от ионов кальция.

Большинство фосфолипаз С специфично в отношении фосфатидилинозитолов и практически не гидролизует другие типы фосфолипидов. Активный фермент может гидролизовать до 50% от общего количества фосфатидилино­зитолов клеточной мембраны. При гидролизе фосфатидилинозитол-4,5-бисфосфата (ФИФ 2) образуются продукты диацилглицерол (ДАГ) и инозитол-1,4,5-трифосфат (ИФ 3), служащие вторичными посредниками в трансмембранной передаче сигнала по инозитолфосфатному пути.

Е. протеинкиназы

Все полярные сигнальные молекулы, действу­ющие на клетку-мишень через мембранные ре­цепторы, осуществляют свою биологическую фун­кцию путём фосфорилирования специфических белков и ферментов, регулирующих метаболизм в клетке. Фосфорилирование изменяет (увеличи­вает или уменьшает) их активность. Катализиру­ют фосфорилирование белков (протеинов) протеинкиназы по аминокислотным остаткам серина, треонина, тирозина. Протеинкиназы могут быть субъединицей мембранного рецептора, например тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном. Дру­гая группа - протеинкиназы, регулируемые вто­ричными вестниками гормонального сигнала (цАМФ, цГМФ, Са 2+ , ДАГ), например протеин­киназа А, протеинкиназа С, протеинкиназа G, кальмодулинзависимые протеинкиназы и др.

Протеинкиназы А

Протеинкиназы А (цАМФ-стимулируемые) участвуют в аденилатциклазной системе переда­чи сигнала. Протеинкиназа А состоит из 4 субъе­диниц R 2 С 2 - двух регуляторных субъединиц (R 2) и двух каталитических (С 2) (см. рис. 5-41). Ком­плекс R 2 С 2 не обладает ферментативной актив­ностью.

Комплекс R 2 С 2 разными способами прикреп­ляется к мембране. Некоторые формы протеин­киназы А «заякориваются» с помощью али­фатического остатка миристиновой кислоты ка­талитических субъединиц. Во многих тканях про­теинкиназа А связана с «заякоренным» белком АКАР s (от англ. сАМР dependent protein kinase anchoring proteins). АКАР s имеет центр связыва­ния для регуляторных субъединиц протеинкина­зы А. С помощью белка АКАР s протеинкиназа А связывается с мембраной в области локализации ферментов, катализирующих образование цАМФ (аденилатциклаза) или его гидролиз (фосфодиэстераза), а также белков, в регуляции активности которых фермент принимает участие, например потенциалзависимые Са 2+ -каналы.

Регуляторные субъединицы протеинкиназы А имеют специфические центры для связывания цАМФ. Присоединение цАМФ к регуляторным, субъединицам приводит к изменению конформации последних и снижению сродства к каталитическим субъединицам С, происходит диссоциация по схеме:

цАМФ 4 + R 2 С 2 -> цАМФ 4 R 2 + С + С

Субъединицы С представляют собой активную форму протеинкиназы А, которая катализирует реакции фосфорилирования по серину и треонину. Каталитические субъединицы С у разных типов протеинкиназ а не идентичны, они различаются прежде всего специфичностью в отношении белков-субстратов.

Протеинкиназы С

Протеинкиназы С участвуют в инозитолфосфатной системе передачи сигнала. Фермент со­стоит из двух функционально различных до­менов - регуляторного и каталитического. Регуляторный домен содержит 2 структуры («цинковые пальцы»), образованные фрагмента­ми пептидной цепи, богатыми цистеином, и содержащими 2 иона цинка (см. раздел 1). «Цинковые пальцы» участвуют в связывании диацилглицерола. Другой фрагмент регуляторно­го домена имеет высокое сродство к Са 2+ . По­вышение концентрации кальция в цитозоле увеличивает сродство протеинкиназы С к фосфатидилсерину мембраны. Транслокация про­теинкиназы С к мембране позволяет ферменту связаться с ДАГ, который ещё больше повыша­ет сродство протеинкиназы С к ионам кальция (рис. 5-38). Наиболее распространённые изоформы протеинкиназы С активируются Са 2+ , диацилглицеролом и фосфатидилсерином.

5-38. Регуляция активности протеинкиназы С (ПКС). ФС - фосфатидилсерин; ДАГ - диаципглицерол.

Каталитический домен имеет центр, связывающий АТФ и белок-субстрат. Активная фермента протеинкиназы С фосфорилирует по остаткам серина и треонина. Снижение концентрации ионов кальция в клетке нарушает связь протеинкиназы С с фосфатидилсерином и диацилглицеролом, фермент переходит в неактивную форму и отделяется от мембраны.

3. Протеинкиназы G

В отличие от протеинкиназы А, протеинкиназа G присутствует не во всех тканях, ее обнаруживают в лёгких, мозжечке, гладких мышцах и тромбоцитах. Изоформы протеинкиназы G могут быть связаны с мембраной или находиться цитоплазме. Растворимая протеинкиназа С состоит из двух идентичных субъединиц, каждая из которых имеет два центра для связывания цГМФ. Приединение цГМФ к регуляторным центрам вызывает конформационные изменения субъединиц и повышает каталитическую активность фермента (рис. 5-39). Протеинкиназа G, подобно протеинкиназе А и С, специфична в отношении определённых белковых субстратов, которые она фосфорилирует по остаткам серина и треонина.

Рис. 5-39. Регуляция активности протеинкиназы G (ПКG).

Ж фосфодиэстеразы

Фосфодиэстеразы - ферменты, катализирующие превращение цАМФ (рис. 5-40) или цГМФ в неактивные метаболиты АМФ или ГМФ. Фосфодиэстеразы, снижая концентрации вторичных посредников, разрывают цепь превращений, вызванных активатором рецептора.

Рис.5-40. Превращение цАМФ в АМФ.

Фосфодиэстеразы присутствуют в клетках тка­ней в 2 формах: в форме растворимого белка и мембранносвязанного. Формы фермента, связан­ные с мембраной, в разных тканях составляют 5-40%. В одной и той же ткани могут присут­ствовать разные формы фосфодиэстеразы, раз­личающиеся по сродству к субстратам, молеку­лярному весу, заряду, регуляторным свойствам и локализации в клетке.

Фосфодиэстеразы циклических нуклеотидов не обладают абсолютной специфичностью, по­этому, как правило, одна и та же форма фер­мента способна гидролизовать как цАМФ, так и цГМФ. Однако скорости гидролиза этих двух нуклеотидов под действием одной и той же фосфодиэстеразы могут значительно различать­ся. Это зависит от того, какая фосфодиэстераза присутствует в клетке - более специфичная в отношении цАМФ или более специфичная к цГМФ, от соотношения концентраций цАМФ и цГМФ в клетке и от действия регуляторов фосфодиэстеразы.

В большинстве тканей присутствует фосфоди­эстераза-1, более специфичная к цАМФ, активи­руемая Са 2+ , комплексом 4 Са 2+ -кальмодулин и цГМФ.

(англ. Guanine nucleotide-binding proteins, белки, связывающие гуанилови нуклеотиды) — это семья белков, участвующих в клеточном сигналюванни эукариот. G-белки играют роль своеобразных переключателей: они могут переходить из неактивного состояния в активное и наоборот, соответственно включая или выключая передачу определенного сигнала внутри клетки. Свое название эти белки получили за способность связывать гуанилови нуклеотиды (англ. G uanine nucleotide): в комплексе с гуанозиндифосфатом (ГДФ) они являются неактивными, а в комплексе с гуанозинтрифосфат (ГТФ) — активные.

Термин «G-белки» чаще употребляется для обозначения гетеротримерних (больших) ГТФ-связывающих белков, состоящих из трех субъединиц α, β и γ; существует еще один класс ГТФ-связывающих белков — мономеры, которые иногда называют малыми G-белками (суперродина Ras малых ГТФаз), они гомологичные к α-субъединицы больших.

Гетеротримерни G-белки участвуют в передаче сигналов от рецепторов, сопряженных с G-белками (англ. G-protein coupled receptors, GPCR) — крупнейшего класса клеточных рецепторов (например, в Caenorhabditis elegans их гены занимают 5% всего генома). У позвоночных животных они отвечают за восприятие клеткой ряда гормонов и других сигнальных молекул, а также за химическое чувств (обоняние и вкус) и фоторецепции (зрение). Показательно, что примерно половина известных фармацевтических препаратов действуют через рецепторы, сопряженные с G-белками: среди таких есть и известные медикаменты, например антигистамины Кларитин (лоратадин) и антидепрессант Прозак (Флуоксетин), а также психотропные вещества, в частности героин, кокаин и тетрагидроканнабинол (действующее вещество марихуаны).

Гетеротримерни G-белки были открыто Альфредом Гилман и Мартином Родбеллом, за что в 1994 году они получили Нобелевскую премию по физиологии и медицине.

Струкрутра гетеротримерних G-белков

Гетротримерни G-белки состоят из трех субъединиц: α, β и γ. α-субъединица содержит домен связывания и гидролиза ГТФ, что является идентичным для всей суперродины ГТФаз. В состав β-субъединицы входит 7 β-структур, организованных как лопасти пропеллера. С β-субъединицей тесно взаимодействует γ-субъединица, вместе они образуют единую функциональную структуру, которая может диссоциировать только в случае гидролиза белка. Весь G-белок заякорена в мембране с помощью двух липидов, один из которых ковалентно присоединен к N-конца α-субъединицы, другой к C-конца γ-субъединицы.

Рецепторы, сопряженные с G-белками

Рецепторы, сопряженные с G-белками (англ. G-protein coupled reseptors, GPCR) — крупнейшая семья клеточных рецепторов эукариот, обеспечивающих восприятие гормонов, нейромедиаторов, локальных регуляторов, а также обеспечивают зрение, обоняние и чувство вкуса позвоночных животных. В геноме человека найден около 700 генов GPCR, а в мыши за один только обоняние ответ более 1000 этих рецепторов.

Сигнальные молекулы, выступают лигандами для рецепторов, сопряженных с G-белками, могут быть очень разными по химической природе: белками, небольшими пептидами, липидами, производными аминокислот и тому подобное. Кроме этого некоторые предсатвникы этого класса рецепторов, в частности родопсин, могут воспринимать фотоны света. Иногда для одной сигнальной молекулы существует несколько различных GPCR, экспрессируются в различных типах клеток и запускают различные сигнальные пути. Например, в организме человека существует как минимум 9 различных рецепторов к адреналину и не менее 14 — до нейромедиатора серотонина.

Все рецепторы, сопряженные с G-белками, имеют похожую структуру: они состоят из одной полипептидной цепи, 7 раз пересекает липидный бислой. Каждый трансмембранный домен представлен α-спирали, в состав которой входит 20-30 неполярных аминокислот. Эти домены соединены между собой петлями различной величины, расположенными по обе стороны плазматической мембраны. GPCR преимущественно являются гликопротеинами, углеводные остатки которых расположены на зовнишьноклитинний стороне. Внутриклеточные домены этих рецепторов содержат сайты взаимодействия с G-белками.

Функциональный цикл G-белков

G-белки выполняют роль сопряжения клеточных рецепторов с определенными эффекторными молекулами, такими как ферменты или ионные каналы, при этом они выступают в качестве молекулярных переключателей. В неактивном состоянии G-белки содержат ГДФ, связанный с α-субъединицей.

Передача сигнала начинается тогда, когда на клеточный рецептор действует соответствующий лиганд, в результате чего рецептор активируется и меняет конформацию. Активированный рецептор влияет на G-белок (который или находится с ним в постоянном комплексе, или ассоциирует после активации), из-за чего структура α-субъединицы меняется таким образом, что она высвобождает связанную молекулу ГДФ. Место этой молекулы быстро занимает ГТФ, это приводит к аткивации G-белка и изменений в его структуре: α-субъединица теряет сродство к βγ-комплекса, и он распадается. В таком активированном состоянии как ГТФ-связанная α-субъединица, так и βγ-комплекс, могут осуществлять передачу сигнала: активировать определенные ферменты или влиять на состояние ионных каналов. α-субъединица является ГТФазою, и как только она гидролизует присоединен ГТФ до ГДФ, сразу же инактивируется, и триммера структура G-белка восстанавливается. Таким образом происходит отключение звука. Инактивированный G-белок может взаимодействовать с последующей молекулой рецептора и снова включаться.

Регуляция активности G-белков

Эффективность передачи определенного сигнала через G-белок зависит от соотношения между концентрацией активного, ГТФ-связанной, и неактивной, ГДФ-связанной форм. А это соотношение в свою очередь зависит от двух констатирует: константы диссоциации ГДФ, и константы скорости гидролиза ГТФ:

Где

  • G-protein · GTP — концентрация активной формы G-белка;
  • G-protein · GDP — концентрация неактивной формы G-белка;
  • k diss, GDP — константа диссоциации ГДФ;
  • k cat, GTP — константа скорости гидролиза ГТФ.

Такое соотношение подтверждается при избытке ГТФ в среде, а также его быстрого, фактически моментального, связывание с «пустой» молекулой G-белка (то есть не связанной с одним гуаниловый нуклеотидом). В таком случае эффективность передачи сигнала может регулироваться одним из следующих способов:

  • Увеличение k diss, GDP, что обеспечивается специальным белками — факторами обмена гуаниловый нуклеотидов (англ. Guanine nucleotide exchange factors, GEFs), способствует интенсификации передачи сигнала. Для гетеротримерних G-белков такими факторами являются активированные рецепторы (GPCR), связанные с соответствующим лигандом.
  • Уменьшение k diss, GDP, что обеспечивается ингибиторами диссоциации гуаниловый нуклеотидов (англ. Guanine nucleotide dissociation inhibitors, GDI). Белки с такими функциями пока найдены для Ras-суперродины малых ГТФаз, их функция заключается в поддержании в цитоплазме постоянного пула неактивированных молекул, связанных с ГДФ;
  • Увеличение k cat, GTP, то есть скорости гидролиза ГТФ, осуществляется благодаря ГТФаза-активирующим белкам (англ. GTPase activating proteins, GAPs). Таким образом снижается продолжительность жизни активированных молекул G-белков. Активность GAPs обычно регулируется другими сигнальными путями. Белки, ускоряют гидролиз ГТФ α-субъединицей гетеротримерних G-белков, называются регуляторы сигналювання G-белков (англ. Regulator of G protein signaling, RGS), в геноме человека есть около 25 генов RGS, каждый из которых взаимодействует с характеринм набором G- белков.

Сигнальные пути, активируются G-белками

G-белки получают входной сигнал от ассоциированных с ними рецепторов, после чего они активируют один из сигнальных путей клетки.

Влияние на синтез циклического АМФ

Циклический АМФ (цАМФ) — это распространенный вторичный посредник, контролирует многие процессы в эукариотических клетках. цАМФ синтезируется с АТФ большим трансмембранным ферментом аденилатциклазы, а разлагается цАМФ-фосфодиэстеразой. Многие сигнальных молекул влияют на клетку путем увеличения или уменьшения концентрации цАМФ через активацию или подавление аденилатциклазы. цАМФ осуществляет свою функцию вторичного посредника активируя цАМФ-зависимой протеинкиназы (протеинкиназу А, ПКА), которая в свою очередь фосфорилирует по остаткам серина и треонина много белков в клетке, активируя или деактивуючы их.

Существует два типа G-белков, влияющих на активные аденилатциклазы: G s (англ. Stimulatory) — стимулирующий, активирующий ее и увеличивает концентрацию цАМФ и G i (англ. Inhibitory) — ингибирующее, подавляющее аденилатциклазу, но также действует путем прямого воздействия на ионные каналы. Примерами реакций, запускаемых путем G s зависимого увеличение концентрации цАМФ, являются:

  • Синтез и секреция тиреоидных гормонов щитовидной железой под влиянием тиреотропного гормона;
  • Секреция кортизола корой надпочечников под влиянием адренокрортикотропного гормона;
  • Расщепление гликогена в мышцах под воздействием адреналина;
  • Расщепление гликогена в печени под влиянием глюкагона;
  • Увеличение частоты и силы сердечных сокращений под влиянием адреналина;
  • Реабсорбция воды в почках под влиянием паратгормона;
  • Расщепление триглицеридов в жировой ткани под влиянием одного из насутпних гормонов: адреналина, АКТГ, глюкагона, тиреотропного гормона.

Бактериальные токсины, влияющие на активность белков G s и G i

G-белки, влияющие на цАМФ-зависимое клеточное сигналювання, являются мишенями действия бактериальных токсинов:

  • Холерный токсин — это фермент, который катализирует перенос АДФ-рибозы с НАД + (АДФ-рибозилирования) на α-субъединицы G s -билка. В результате он теряет возможность гидролизовать связанную молекулу ГТФ и переходит в состояние перманентной активации. Это в свою очередь приводит к длительному повышению концентрации цАМФ в клетках стенки толстого кишечника, из-за чего в его просвет начинает выделяться большое количество воды и ионов Cl -. Таким образом и возникает диарея, является характерным признаком заболевания холерой.
  • Токсин коклюша осуществляет АФД-рибозилирования α-субъединицы G i -билка, из-за чего она не может взаимодействовать с соответствующим рецептором и включаться.

Эти два токсины используются в биологических исследованиях, чтобы определить определенная клеточный ответ опосредуется G s — или G i -билком.

Активация фосфолипазы С-β

Много рецепторов, сопряженных с G-белками действуют путем активации фосфолипизы С-β (ФЛC-β). Этот фермент действует на инозитоловий фосфолипид: фосфатидилинозитол-4,5 бифосфат (ФИ (4,5) Ф2 или ФИФ 2), присутствует в небольшом количестве во внутреннем листке липидного бислоя плазматической мембраны. Рецепторы, активирующие этот сигнальный путь, обычно сопряженные с G q -билком, активирующий фосфолипазу С аналогично как G s -билок — аденилатциклазу. Активирована фосфолипаза расщепляет фосфатидилинозитол-4,5 бифосфат к инозитол-1,4,5-трифосфата (ИФ 3) и диациглицеролу (ДАГ). На этом этапе сигнальный путь разветвляется:

  • ИФ 3 от плазматической мембраны диффундирует в цитозоль, где впоследствии присоединяется к кальциевых каналов на поверхности эндоплазматического ретикулума и открывает их. Это приводит к резкому увеличению концентрации ионов Ca + в цитоплазме. Эта молекула также является важным вторичным посредником и регулирует многие клеточных процессов.
  • ДАГ остается встроенным в мембрану, где может быть субстратом для синтеза эйкозаноидов, в том числе простагландинов, участвующих в ощущении боли и воспалительных процессах. Также ДАГ активирует серин / треониновых протеинкиназу С, активность которой также зависит и от кальция.

Примерами клеточных реакций G-белок-зависимой активации фосфолипазы C-β являются:

  • Расщепление гликогена в печени под влиянием вазопрессина;
  • Секреция амилазы поджелудочной железой под влиянием ацетилхолина;
  • Сокращение гладких мышц под влиянием ацетилхолина;
  • Агрегация тромбоцитов под влиянием тромбина.

Регуляция ионных каналов G-белками

Многие G-белков действуют путем открытия или закрытия ионных каналов, таким образом изменяя электрические свойства плазматической мембраны.

Например снижение частоты и силы сердечных сокращений под влиянием ацетилхолина происходит благодаря тому, что мускариновых ацетилхолиновых рецепторов после активации взаимодействует с G i -билком, α-субъединица которого подавляет деятельность аденилатциклазы, в то время как βγ-комплекс открывает калиевые каналы в плазматической мембране клеток сердечной мышцы, из-за чего их возбудимость уменьшается.

Другие G-белки регулируют активность ионных каналов косвенно: например рецепторы зрения и обоняния действуют через G-белки, которые влияют на синтез циклических нуклеотидов, в свою очередь закрывают или открывают ионные каналы (ионные каналы управляемые циклическими нуклеотидами). Например, все обонятельные рецепторы сопряжены с G olf -билком, который активирует аденилатциклазу; цАМФ, синтезируемый, открывает натриевые каналы, что приводит к деполяризации мембраны и генерирования нервного импульса (рецепторного потенциала), который передается нейронам.

В палочках сетчатки глаза человека светочувствительной молекулой является родопсин. Плазматическая мембрана этих клеток содержит большое количество цГМФ-управляемых катионных каналов. При отсутствии стимуляции светом цитоплазма палочек содержит высокое количество цГМФ, что удерживает катионные каналы в открытом состоянии. В результате мембрана периодически деполяризуется и происходит синаптическая передача импульсов нейронам. После активации светом родопсин меняет конформацию и взаимодействует с G-белком трансдуцином (G t). После этого его α-субъединица активирует цГМФ-фосфодиэстеразу, которая расщепляет цГМФ, в результате чего закрываются катионные каналы и синаптическая передача прекращается. Именно уменьшение частоты импульсов, поступающих от светочувствительных клеток, воспринимается мозгом как ощущение света.

Семьи G-белков

Все гетеротримерни G-белки разделяют на четыре основные семьи по аминокислотной последовательности α-субъединицы:

Основные семьи гетеротримерних G-белков на основе аминокислотной последовательности α-субъединицы
Семья Некоторые члены Субъединица, отвечающий за эффект Некоторые функции
I G s α Активация аденилатциклазы, открытие кальциевых каналов
G olf α Активация аденилатциклазы в обонятельных нейронах
II G i α Ингибирование аденилатциклазы
βγ Открытие калиевых каналов
G o βγ Открытие калиевых каналов, закрывания кальциевых каналов
α и βγ Активация фосфолипазы С-β
G t (трансдуцин) α Активация цГМФ-фосфодиэстеразы в фоторецепторах позвоночных
III G q α Активация фосфолипазы С-β
IV G 12/13 α Активация мономерных ГТФаз семьи Rho, регулирующих актиновом цитоскелет

Название «белки» происходит от способности многих из них при нагревании становиться белыми. Название «протеины» происходит от греческого слова «первый», что указывает на их важное значение в организме. Чем выше уровень организации живых существ, тем разнообразнее состав белков.

Белки образуются из аминокислот, которые соединяются между собой ковалентной – пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой. При взаимодействии двух аминокислот образуется дипептид (из остатков двух аминокислот, от греч. пептос – сваренный). Замена, исключение или перестановка аминокислот в полипептидной цепи вызывает возникновение новых белков. Например, при замене лишь одной аминокислоты (глутамина на валин) возникает тяжелая болезнь – серповидно-клеточная анемия, когда эритроциты имеют другую форму и не могут выполнять свои основные функции (перенос кислорода). При образовании пептидной связи отщепляется молекула воды. В зависимости от количества аминокислотных остатков выделяют:

олигопептиды (ди-, три-, тетрапептиды и т. п.) – содержат до 20 аминокислотных остатков;

полипептиды – от 20 до 50 аминокислотных остатков;

белки – свыше 50, иногда тысячи аминокислотных остатков

По физико-химическим свойствам различают белки гидрофильные и гидрофобные.

Существуют четыре уровня организации белковой молекулы – равноценные пространственные структуры (конфигурации , конформации ) белков: первичная, вторичная, третичная и четвертичная.

Первичная структура белков является простейшей. Имеет вид полипептидной цепи, где аминокислоты связаны между собой прочной пептидной связью. Определяется качественным и количественным составом аминокислот и их последовательностью.

Вторичная структура белков

Вторичная структура образована преимущественно водородными связями, которые образовались между атомами водорода NH-группы одного завитка спирали и кислорода СО-группы другого и направлены вдоль спирали или между параллельными складками молекулы белка. Белковая молекула частично или целиком скручена в α-спираль или образует β-складчатую структуру. Например, белки кератина образуют α-спираль. Они входят в состав копыт, рогов, волос, перьев, ногтей, когтей. β-складчатую имеют белки, которые входят в состав шелка. Извне спирали остаются аминокислотные радикалы (R-группы). Водородные связи значительно более слабые, чем ковалентные, но при значительном их количестве образуют довольно прочную структуру.

Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков – миозин, актин, фибриноген, коллаген и т. п.

Третичная структура белка

Третичная структура белка. Эта структура постоянна и своеобразна для каждого белка. Она определяется размером, полярностью R-групп, формой и последовательностью аминокислотных остатков. Полипептидная спираль закручивается и укладывается определенным образом. Формирование третичной структуры белка приводит к образованию особой конфигурации белка – глобулы (от лат. globulus – шарик). Его образование обуславливается разными типами нековалентных взаимодействий: гидрофобные, водородные, ионные. Между остатками аминокислоты цистеина возникают дисульфидные мостики.

Гидрофобные связи – это слабые связи между неполярными боковыми цепями, которые возникают в результате взаимного отталкивания молекул растворителя. При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофильные цепи.

Третичную структуру имеет большинство белков – глобулины, альбумины и т. п.

Четвертичная структура белка

Четвертичная структура белка. Образуется в результате объединения отдельных полипептидных цепей. В совокупности они составляют функциональную единицу. Типы связей разные: гидрофобные, водородные, электростатические, ионные.

Электростатические связи возникают между электроотрицательными и электроположительными радикалами аминокислотных остатков.

Для одних белков характерно глобулярное размещение субъединиц – это глобулярные белки. Глобулярные белки легко растворяются в воде или растворах солей. К глобулярным белкам принадлежит свыше 1000 известных ферментов. К глобулярным белкам относятся некоторые гормоны, антитела, транспортные белки. Например, сложная молекула гемоглобина (белка эритроцита крови) является глобулярным белком и состоит из четырех макромолекул глобинов: двух α-цепей и двух β-цепей, каждая из которых соединена с гемом, содержащим железо.

Для других белков характерно объединение в спиральные структуры – это фибриллярные (от лат. fibrilla – волоконце) белки. Несколько (от 3 до 7) α–спиралей свиваются вместе, подобно волокнам в кабеле. Фибриллярные белки нерастворимы в воде.

Белки делят на простые и сложные.

Простые белки (протеины)

Простые белки (протеины) состоят только из остатков аминокислот. К простым белкам относят глобулины, альбумины, глутелины, проламины, протамины, пистоны. Альбумины (например, альбумин сыворотки крови) растворимы в воде, глобулины (например, антитела) нерастворимы в воде, но растворимы в водных растворах некоторых солей (хлорид натрия и т. п.).

Сложные белки (протеиды)

Сложные белки (протеиды) включают в состав, кроме остатков аминокислот, соединения другой природы, которые называются простетическою группой. Например, металлопротеиды – это белки, содержащие негеминовое железо или связанные атомами металлов (большинство ферментов), нуклеопротеиды – белки, соединенные с нуклеиновыми кислотами (хромосомы и т. п.), фосфопротеиды –белки, в состав которых входят остатки фосфорной кислоты (белки яичного желтка и т. п.), гликопротеиды –белки в соединении с углеводами (некоторые гормоны, антитела и т. п.), хромопротеиды – белки, содержащий пигменты (миоглобин и т. п.), липопротеиды – белки, содержащие липиды (входят в состав мембран).

Важнейшим внутриклеточным компонентом сигнальных каскадов являются G-белки. В настоящее время известно около 20 различных G-белков. Так, например, Gs и Gi стимулируют и ингибируют аденилатциклазу, соответственно; Gq активирует фосфолипазу С. Среди G-белков сенсорных клеток можно отметить: фоторецепторные - Gt (трансдуцин), обонятельные - Golf и вкусовые - Gg.

По своему строению G-белки представляют собой гетеротримеры, состоящие из трех типов субъединиц: a (альфа), b (бетта) и g (гамма), однако в нативных условиях бетта и гамма субъединицы функционируют как единый комплекс. Общей структурной особенностью G-белков является наличие семи трансмембранных альфа-спиралей. Важнейшей характеристикой G-белков является присутствие на их a-субъединице центра связывания гуаниловых нуклеотидов: GDP(гуанизидиндифосфат) и GTP (гуанизидинтрифосфат). Если с G-белком связан GTP, то это соответствует его активированному состоянию (G-GTP) или, иначе, G-белок находится в активированном положении. Если в нуклеотидсвязывающем центре присутствует GDP, то эта форма (G-GDP) соответствует "выключенному" состоянию. Ключевым моментом передачи сигнала от рецептора (на который подействовал первичный сигнал) к G-белку является катализ активированным рецептором обмена GDP, связанного с G-белком, на присутствующий в среде GTP (GDP / GTP-обмен на G-белке).

Трансмембранные рецепторы обеспечивают основные жизненно важные функции клетки: сигнальную, транспортную, защитную. Изучение механизма действия различных биологически активных соединений, в том числе противовирусных и противобактериальных показало, что наиболее специфичными мишенями, как для лекарственных, так и для токсических соединений (ядов) являются клеточные рецепторы человека и патогенных микроорганизмов. Значительную часть трансмембранных рецепторов составляют G-белок сопряженные рецепторы (GPCR), около половины всех известных в настоящее время лекарственных препаратов действуют именно на GPCR. Из всех видов поверхностных клеточных рецепторов GPCR наиболее универсальны. Эти рецепторы связывают широкий круг молекул, от, небольших по размеру нейромедиаторов, до крупных белков. GPCR вовлечены практически во все жизненно важные процессы.

Разнообразие сигналов, передаваемых GPCR, обеспечивается функциональным сопряжением разных GPCR между собой. Таким образом, очевидно, что наиболее универсальный механизм влияния токсичных и лекарственных соединений на клетку реализуется через воздействие на рецепторный аппарат клетки, путем изменения их конформации или основных характеристик связи лиганд-рецептор, их специфичности и обратимости.

Из истории открытия С-белков. 8

Структура и свойства. 8

Связь с мембраной. 9

Стуктурно-функциональная организация G-белков. 9

Классификация по чувствительности к токеинам.. 10

Сопряжение с эффекторными системами. 10

Регуляция активности G-белков. 11

Аденилатциклаза. 12

Фосфолипазы.. 13

Протеинкиназы.. 14

Фосфодиэстеразы.. 16

Аденилатциклазная система. 17

Влияние бактериальных токсинов на активность аденилатциклазы (АДФ-рибозилирование G-белков) 20

Инозитолфосфатная система. 21

Участие белка кальмодулина в инозитолфосфатной передаче сигнала. 22

Саморегуляция системы.. 23

α-субъединица: общие свойства. 23

β и γ субъединицы: общая характеристика. 24

G-белки: βγ-субъединицы.. 25

ГТФ-связывающие белки образуют два основных семейства G-белков и низкомолекулярных ГТФ-связывающих белков. 28

Литература. 30

Введение

Сигнальные G-белки являются универсальными посредниками при передаче гормональных сигналов от рецепторов клеточной мембраны к эффекторным белкам, вызывающим конечный клеточный ответ. Когда семидоменная рецепторная молекула, локализованная в мембране сенсорной клетки, активируется какими-то изменениями во внешней среде, она претерпевает конформационные изменения. Последние детектируются

G-белками связанными с мембраной, которые, в свою очередь, активируют эффекторные молекулы в мембране. Часто это приводит к выделению вторичных мессенджеров в цитозоль.

Они являются объектом интенсивного изучения в связи с их участием во многих важных физиологических процессах. G-белки, участвующие в передаче сигнала, являются членами большого надсемейства гуанин-связывающих белков. G–белки - это прецизионные регуляторы, включающие или выключающие активность других молекул.

Примерно 80% первичных мессенджеров (гормоны, нейротрансмиттеры, нейромодуляторы) взаимодействуют со специфическими рецепторами, которые связаны с эффекторами через G-белки.

G-белки - белки, связывающие гуанозиновые нуклеотиды. G-белки, ассоциированные с рецепторами, связаны с мембраной. В неактивном состоянии они связаны с GDР. При связывании рецептора с лигандом ГДФ замещается на ГТФ, в результате чего происходит активация. Процесс этот сравнительно медленный, протекающий в течение секунд - десятков секунд.

G-белки биологических мембран имеют гетеротримерную структуру. Они состоят из большой α-субъединиц (около 45 килодальтон - кДа), а также меньших β и γ-субъединиц, α-субъединица обладает ГТФ-азной активностью, в неактивной (выключенной) форме она связывает молекулу ГДФ на активном сайте. Субъединицы β и γ связаны между собой, и в физиологических условиях не могут быть диссоциированы. В неактивном состоянии βγ-комплекс непрочно связан с α-субъединицей. γ-субъединица связана с цитоплазматическим листком биологической мембраны геранил-гераниловой цепью (20 атомов углерода в цепи), близкой по структуре к холестерину. α-субъединица также связана с мембраной жирной кислотой с длиной цепи в 14 атомов углерода (миристоевая кислота). Такие связи обеспечивают то, что комплекс G-белка удерживается в плоскости мембраны, но в то же время способен легко двигаться в этой плоскости. Легко себе представить, как весь комплекс G-белка с присоединенным ГДФ перемещается в плоскости мембраны под действием тепловых сил, два семейства белков - гетеротримерные гуанозиннуклеотид связывающие белки (G-белки) и отдаленно родственные им гуанозинтрифосфатазы (ГТФ-азы) при связывании ГТФ могут включаться и активировать последующие компоненты передачи сигнала от поверхности клетки. Малые ГТФ-азы участвуют в контроле фундаментальных свойств клетки - полярности формы и процессов деления и дифференцировки. G-белки обычно регулируют более специализированные сигналы - продукцию вторичных мессенджеров. И те и другие способны гидролизовать GTР и таким образом выключать сигнал.

Поскольку β - и γ-субъединицы G-белков чрезвычайно консервативны, G-белки принято различать по их α-субъединицам. Кроме ГТФ-связывающего мотива, каждая последовательность Gальфа содержит как минимум один центр связывания дивалентных катионов, а также сайты ковалентной модификации бактериальными токсинами, катализирующими NAD-зависимые АДФ-рибозилтрансферазные реакции. G-белки, стимулирующие аденилатциклазу (Gs) или участвующие в фототрансдукции (Gt, трансдуцин) служат субстратами для АДФ-рибозилирования, катализируемого холерным токсином по одному из остатков аргинина, что приводит к блокированию деактивации этих белков. Gs, G-белок, ингибирующий аденилатциклазу, (Gi) и G-белок с пока еще неизвестной функцией (Go) АДФ-рибозилируются коклюшным токсином по остатку цистеина, расположенному у С-конца. Эта модификация препятствует взаимодействию между G-белком и рецепторами. Определена последовательность G-белка крысы (Gx), который оказался нечувствительным к коклюшному токсину.

G-белки - это регуляторные белки, связывающие при активации ГТФ. Лучше всего изучены G-белки, стимулирующие и ингибирующие аденилатциклазу (Gs - белки и Gi-белки соответственно). βı - адренорецепторы, β2 - адренорецепторы и D1 рецепторы сопряжены с белком Gs, и поэтому стимуляция этих рецепторов сопровождается активацией аденилатциклазы и повышением внутриклеточной концентрации цАМФ - классического второго (внутриклеточного) посредника. Конечный ответ в разных клетках различен и зависит от того, что представляет собой эффекторные фрагменты (фермент, ионный канал и пр) α2– адренорецепторы, М2-холинорецепторы и D2-рецепторы сопряжены с белком Gi, и стимуляция этих рецепторов приводит к снижению активности аденилатциклазы и внутриклеточной концентрации цАМФ. Изменения активности ферментов и других внутриклеточных белков и, соответственно, клеточных функций при этом противоположны тем, что наблюдаются при активации белка Gs. α1-адренорецепторы (как и М1-холинорецепторы), видимо, сопряжены с другим, пока еще мало изученным типом G-белка. Этот белок иногда обозначают Gq. Он активирует фосфолипазу С, катализирующую распад мембранных фосфолипидов, в частности - фосфатидилинозитол-4,5-дифосфата до ИЗФ и ДГА. Оба эти вещества являются вторичными посредниками.

Связывание агониста (гормона, нейромедиатора и др.) с соответствующим рецептором приводит к белок-белковому взаимодействию между рецептором и G-белком и ускоряет диссоциацию ГДФ. В результате образуется короткоживущий комплекс агонист - рецептор - G-белок, не связанный ни с каким нуклеотидом. Связывание с этим комплексом молекулы ГТФ снижает сродство рецептора к G-белку, что приводит к диссоциации комплекса и высвобождению рецептора. Потенциально рецептор может активировать большое количество молекул G-белка, обеспечивая, таким образом, высокий коэффициент усиления внеклеточного сигнала на данном этапе. Активированная α-субъединица G-белка диссоциирует от βγ-субъединиц и вступает во взаимодействие с соответствующим эффектором, оказывая на него активирующее или ингибирующее воздействие.

α-субъeдиница с присоединенным с ней ГТФ способна взаимодействовать с эффектором в мембране - ферментами, такими, как аденилатциклаза, или, возможно, ионными каналами. Фермент может активироваться или ингибироваться, а ионный канал - открываться или закрываться. Конкретные примеры будут рассмотрены в последующих разделах. Взаимодействие с эффектором, однако, длится до тех пор, пока α - субъединица, являющаяся ГТФазой, удерживает ГТФ. Так что, очень вскоре присоединенный ГТФ гидролизуется до ГДФ. Когда это происходит, α - субъединица снова меняет свою конформацию и теряет способность активировать эффектор. После этого α-ГДФ взаимодействует с βγ-комплексом и снова образует тримерный комплекс, завершая, таким образом, цикл. Предполагают также, что комплекс из βγ-субъединиц тоже может (прямо или опосредованно) влиять на эффекторные ферменты.

Такими ферментами являются аденилатциклаза, фосфолипаза С. G-белки также регулируют работу К и Са²+-ионных каналов, К G-белкам относятся полипептид Gs, стимулирующий аденилатциклазу и регулирующий Са²+-ионные каналы, полипептид Gi, ингибирующий аденилатциклазу, и регулирующий К+-каналы в клетках тканей мозга, Gt, трансдуцин, участвующий в передаче светового сигнала, Golf специфичный белок обонятельных ресничек и др. Все G-белки являются гетеротримерами, состоящими из субъединиц α, β‚ и γ в порядке уменьшения молекулярной массы.

Впоследствии ГТФ, связанный с α-субъединицей G-белка, подвергается гидролизу, причем ферментом, катализирующим этот процесс, является сама α-субъединиц. Это приводит к диссоциации α-субъединицы от эффектора и реассоциации комплекса α-ГДФ с βγ - субъединицами. Спонтанная активация G-белка, связанного с ГДФ - весьма маловероятный процесс.

Этот же механизм лежит в основе гормональной регуляции фосфоинозитидспецифичной фосфолипазы С и фосфолипаза А2. Кроме того, было показано, что G-белки могут непосредственно активировать ионные каналы.

Лимитирующей стадией процесса восстановления исходного состояния G-белка является скорость диссоциации ГДФ от α-субъединицы G-белка. Скорость диссоциации увеличивается при взаимодействии G-белок-ГДФ с агонистсвязанным рецептором. Связывание ГТФ G-белком приводит, очевидно, к образованию комплекса агонист-рецептор-G-белок. Аналог GТР-СТР-γ-S и Мg2+ усиливает диссоциацию α-субъединицы из тримера G-белка. Однако следует заметить, что каталитическая субъединица аденилатциклазы из мембран мозга быка хроматографически соочищается с α - и β-субъединицами Gs-белка и вопрос диссоциации α-субъединиц из тримера G-белка для активации эффектора требует уточнения.

G-белки проявляют значительный полиморфизм. Каждая из форм субъединиц G-белка высокогомологична по структуре, близка по функциям, но отличается молекулярной массой и электрофоретической подвижностью. Особенно широк полиморфизм и наиболее изучен для αs и αiG-белков. Так из мозга человека выделено 11 форм ДНК, ответственных за синтез αs-субъединиц, четыре вида которых клонированы и, предполагается, что они определяют синтез четырех изоформ αs, в мозге человека. Для αi найдены, в основном, три изоформы αi1, αi2, αi3. Молекулярные массы изоформы αs находятся в пределах 42-55 кДа, а αi39-41 кДа. Распределение молекулярных вариантов αi носит тканеспецифический характер: αi1 представлена, в основном, в мозге, αi2 обнаружена в нервной ткани и в клетках крови, αi3 представлена в периферических тканях и отсутствует в мозге. Распределение генов, кодирующих синтез трех изоформ αi по тканям примерно совпадает в ряду: человека, бык, крыса, мышь. Определение аминокислотной последовательности αi и αs показало, что изоформы αs или αi различаются в области С - и N - концевой последовательности, связывающихся с рецептором или эффектором. Предполагается, что полиморфизм α-субьединиц определяется многообразием рецепторов и их подтипов и разнообразием эффекторных систем.